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Abstract 
This thesis focuses on improving the productivity of autonomous and telemanipula- 
tion systems consisting of a manipulator arm mounted to a free flying underwater 
vehicle. 

Part I focuses on minimizing system sensitivity to misalignment through the design 
of a grasping system consisting of a gripper and a suite of handles that passively self 
align to the gripper when grasped. After discussing the general requirements for 
passive self alignment the thesis presents a gripper which is guaranteed to yield self 
alignment of cylinders, given sufficient grasp closure force. Building on these results, 
several other compatible, self aligning handle designs are presented. Each handle also 
has, when grasped, an actuator-orthogonal load space, i.e. a vector space of applied 
loads whose support requires no gripper actuator force. The mix of handle properties 
enables handles to be matched to the particular needs of each task. Part I concludes 
with a discussion of successful field use of the system on the Jason Remotely Operated 
Undersea Vehicle operated by the Woods Hole Oceanographic Institution. 

Part II focuses on minimizing system contribution to misalignment by enabling 
the vehicle to exploit contact with fixed environmental objects to help stabilize the 
vehicle. Specifically, Part II presents a technique which determines the points of con- 
tact and constrained directions for a moving, planar rigid body interacting with fixed 
planar rigid bodies in its environment. Knowing the vehicle geometry and velocity 
we identify kinematically feasible contact points, from which we construct the set of 
kinematically feasible contact models. Using each model's constraint equations, we 
decompose the vehicle's measured velocity, net contact force, and differential motion 
vectors into permissible and impermissible components. From these we compute the 



violation power and violation energy for each model, i.e. the power dissipation and 
work associated with the impermissible components of the measured vectors. The 
violation power identifies the best model in each class of models while the violation 
energy identifies which of these best-of-class models is the best overall model. Part II 
concludes with experimental data confirming the efficacy of the contact identification 
technique. 
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Chapter 1 

Introduction 

This thesis addresses the problem of reducing a manipulation system's sensitivity to 

geometric uncertainty, i.e. uncertainty in the knowledge of the geometry and po- 

sition/orientation of objects in the environment relative to the manipulator. While 

geometric uncertainty presents problems in any manipulation environment, it presents 

particularly severe challenges to the completion of undersea manipulation tasks. Un- 

dersea manipulation systems typically consist of a manipulator arm mounted to a 

free flying underwater vehicle. In general the geometric uncertainty associated with 

the undersea environment is quite high. We typically have little information about 

the geometry of naturally occurring objects in the undersea environment. Even the 

engineered objects that we introduce in the course of our tasks tend to have high 

geometric uncertainty in that their positions relative to the vehicle and the manip- 

ulator arm are generally poorly known. In the following section we qualitatively 

consider the impact of geometric uncertainty on the productivity of a (teleoperated 

or autonomous) manipulation system. 
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1.1    Effects of misalignment 

To illustrate the effects of geometric uncertainty consider the task of recovering a 

tool from the ocean bottom using a manipulator mounted to a free flying vehicle. To 

simplify the problem let us assume that misalignment between the end effector and 

the tool occurs only in one direction. Let us further assume that the misalignment 

in this direction can be modeled as a zero mean Gaussian distribution with standard 

deviation a , i.e. that the actual end effector position is equal to the desired position 

plus a random misalignment component. We define the tolerance ratio T as 

_ misalignment tolerance 
a 

where the misalignment tolerance is the maximum misalignment between the end 

effector and tool that can occur and still yield a successful grasp when the end effector 

closes. 

Knowing T we can use the probability distribution function for the zero mean 

Gaussian to determine the probability of failure Pa for a single attempt to grasp 

the tool.  The probability Pn that the tool will not be successfully grasped after n 

attempts is equal to the chance of failure for a single attempt raised to thet n'th 

power, i.e. 

Pn = P: (1.2) 

Using this formula we can determine the number of attempts required to guar- 

antee that the aggregate chance of failure Pn is acceptably low. Table 1.1 shows the 

probability of failure for a single attempt and the corresponding number of attempts 

required to guarante that the aggregate chance of failure Pn < .01 for three different 

values of the tolerance ratio T. 

We can view the different values of T in two different ways. 

• If the task and environmental conditions remain fixed, these numbers show 
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T Pa attempts required to ensure Pn < .01 
2 .05 2 
.5 .62 9.5 
.1 .92 55 

Table 1.1: Probability of failure for a single attempt and number of attempts required 
to ensure the aggregate chance of failure is less than .01. 

that increasing the misalignment tolerance of the system significantly reduces 

the chance of failure and, concomitantly, the number of attempts required to 

successfully complete the task. 

• If instead the misalignment tolerance of the system remains fixed, these numbers 

show that whether or not a task can be efficiently performed depends upon the 

natural misalignment associated with it. 

Note that when T is very small the number of attempts required to ensure success 

will be so large as to render the task effectively impossible. 

1.2 General Problem Statement 

The general objective of this thesis is to develop techniques to maximize the tolerance 

ratio T for a vehicle mounted subsea manipulation system. 

1.3 Approach 

There are two obvious ways to maximize T; one is to maximize the misalignment 

tolerance of the manipulation system, the other is to minimize the magnitude of 

the misalignment presented to the manipulation system. This thesis pursues both 

approaches. 
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Part I of this thesis focuses on minimizing the system sensitivity to misalignment 

through the design of a misalignment tolerant grasping system. Part II of this thesis 

focuses on minimizing the vehicle's contribution to the misalignment presented to 

the manipulator by developing the tools necessary to allow the vehicle to exploit 

contact with fixed objects in the environment to help stabilize the vehicle against 

manipulation reaction loads. Specifically, we develop a contact identification system 

which determines the vehicle's points of contact with the environment as well as 

the constraints these contacts impose on the vehicle motion. Such a system, when 

integrated with a hybrid controller, enables the vehicle to control its unconstrained 

degrees of freedom while in contact. 
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Part I 

Minimizing System Sensitivity to 

Misalignment 
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Chapter 2 

Devising a Misalignment Tolerant 

Subsea Grasping System 

2.1    Abstract 

This chapter addresses the problem of devising a subsea grasping system which tol- 

erates significant pre-grasp misalignment between the gripper and its intended task 

object. We begin by discussing the desired characteristics and the required functions 

of such a system and use this information to select the most suitable approach for 

coping with misalignment. We present a 1 degree-of-freedom (D.O.F.) gripper design 

which is guaranteed, in the absence of external loads, to align cylinders of various 

diameter despite significant initial misalignment with respect to the gripper body. 

We then present a handle design which, when grasped by a modified version of the 

gripper, also aligns with respect to the gripper body but, once grasped, requires no 

actuator torque to resist a wide range manipulation loads. A suite of compatible, pos- 

itively locating handles is presented, each imposing a different degree of constraint 

and each able to resist a different subset of manipulation loads. The chapter concludes 

with a discussion of successful field testing of the system and a brief consideration of 

the applicability of this work to the problem of vehicle docking. 
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2.2    Introduction 

In subsea manipulation the presence of ocean currents, incomplete knowledge of work 

site geometry and limitations on vehicle and manipulator control performance all 

combine to guarantee imperfect alignment between the manipulator and its intended 

task object. If the misalignment exceeds the misalignment tolerance of the grasping 

system, the task object cannot be acquired unless the gripper is repositioned. 

In manned submersible and Remotely Operated Vehicle (ROV) systems a human 

operator controls the manipulator motion. Fitts [11] showed that, for humans moving 

an object from a given position to a target area, the time required to complete the 

move decreases steadily as the size of the target area is increased. Thus increasing 

the robustness to misalignment of grasping systems should improve the productiv- 

ity of manned submersible and ROV based manipulation systems by reducing the 

time required to acquire task objects. We expect a more pronounced improvement in 

productivity for ROVs than for manned systems. In ROV systems multiple monoc- 

ular video images replace the direct stereoscopic view of the work site available with 

manned submersible systems. The associated loss of depth perception significantly 

degrades the human operators ability to compensate for misalignment. 

In AUV based manipulation systems the continuous, real-time human intervention 

that ROVs and manned submersibles depend on for coping with misalignment will 

be precluded by the limitations of acoustic communication channels ( 10 kbits/s, 

10s time delay). Sayers [24] imposed these limitations on a real ROV manipulation 

system in order to demonstrate the effectiveness of the teleprogramming paradigm 

for dealing with these limitations. The ROV was actively driven against the sea 

floor (depth: 7 meters) to minimize wave induced motion of the vehicle. Due to the 

grippers sensitivity to misalignment, however, the small vehicle motions which still 

occurred drastically hindered or even prevented successful completion of most tasks. 

Replacing this gripper with a misalignment tolerant gripper (the system presented in 

Section 2.5 of this chapter) dramatically improved the task completion success rate. 
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Based on this experience, we believe that misalignment tolerant manipulation systems 

will be absolutely essential to performing even basic AUV based manipulation tasks. 

A large body of work exists on general purpose grippers. Skinner [26] constructed 

a three fingered gripper that could reproduce most of the basic human grasp modes. 

Rovetta [20] developed a three fingered gripper capable of limited adaption to an 

arbitrary object geometry. Salisbury introduced a fully actuated three fingered cable 

driven gripper capable of dexterously manipulating grasped objects through finger 

motion alone. Jacobsen [15] developed a four fingered tendon driven hand comprised 

of three multi-degree-of-freedom fingers and an articulated thumb. Ulrich [28] con- 

structed a modified version of the Skinner gripper which added an additional grasp 

mode and explicitly made use of contact with the gripper's "palm" to facilitate the 

use of power grasps. Most recently, Lane [16] developed a gripper for undersea use 

comprised of three hydraullically actuated tentacle-like fingers. 

Although each of these grippers can successfully grasp a wide range of object 

shapes, only the dexterous grippers built by Salisbury, Jacobsen and Lane address 

the issue of specifically orienting a grasped object relative to the manipulator. These 

grippers (as is the case for the rest of the grippers cited) generate relatively low grasp 

forces and rely primarily on friction forces to constrain grasped objects. This renders 

these grippers unsuitable for tasks requiring accurate positioning of heavy objects 

(e.g. water samplers, sediment samplers) and/or those involving high manipulation 

loads (e.g. mating connectors, collecting geological samples). 

Tool changer mechanisms (i.e. mechanisms which permit the rapid and automatic 

interchange of different tools to a robots endpoint) represent the opposite extreme in 

grasping system design. These mechanisms are designed to "grasp" only one special- 

ized shape, copies of which are attached to the objects to be grasped. Tool changers 

have been developed for industrial, space [31] and subsea [13] environments. While 

these mechanisms tolerate high forces and are mechanically robust, they tolerate only 

small ( +/- .6 cm.) misalignment and cannot be conveniently scaled up to the +/- 2 
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to 5 cm. desired for subsea systems. Furthermore, such systems obviously cannot be 

directly used to grasp unstructured objects (e.g. rocks, biological samples). 

An intermediate approach is to design an easily grasped object (i.e. a handle) 

for use with a modestly general purpose gripper. This is the approach pursued in 

this thesis. For our purposes the gripper/handle system should be inherently tolerant 

of pre-grasp misalignment and should efficiently resist manipulation loads. A good 

example of a system with these characteristics is the self aligning finger/handle system 

developed by Voellmer [30] for parallel jaw grippers. Although this system could be 

adapted for subsea use, we believe that the gripper/handle solution proposed in the 

following sections better satisfies the needs of subsea grasping systems. 

A closely related body of work has been done by Brost and Goldberg [6], Schim- 

mels and Peshkin [25], Bausch and Youcef-Toumi [4], and Asada [2] on the synthesis 

of optimal pin fixtures for the constraint and alignment (given small initial misalign- 

ment) of parts of known geometry in a plane. The work proposed here considers 

a related problem: the synthesis of a moving part geometry (i.e. a set of fingers) 

which, when brought into contact with a significantly misaligned rigid assembly of 

pins, aligns and efficiently constrains the assembly with respect to the base to which 

the fingers are attached. 

The goal of this chapter is the development of a misalignment tolerant grip- 

per/handle system suitable for use with manned submersible, ROV and AUV based 

manipulation systems. In Section 2.3 we discuss how misalignment impacts grasping 

and suggest a set of desirable system characteristics. Section 2.4 discusses the gen- 

eral requirements for ensuring proper alignment between the handle and gripper and 

the requirements for efficiently resisting manipulation loads. Section 2.5 presents a 

gripper which is shown to accurately and repeatably locate cylinders of various radii. 

Section 2.6 discusses a modified version of this gripper and introduces a handle de- 

sign which, when grasped by the modified gripper, repeatably locates and requires no 

actuator torque to resist most manipulation loads. Finally, Section 2.7 presents addi- 
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tional positively locating/load resisting handles compatible with the proposed gripper 

designs while Section 2.8 discusses successful field use of the completed system. 

2.3    Grasping and misalignment 

The purpose of a grasping system is to perform the following three functions which 

we define as 

1. Capture, i.e. acquire control of an object's position and orientation. 

2. Contain, i.e. control an object's position/orientation despite the presence of 

manipulation and disturbance loads 

3. Release, i.e. disengage from an acceptably repositioned object (This implies 

that the act of disengaging should not perturb the object from its new posi- 

tion/orientation.). 

We assume that at each stage there exists some desired relative position/orientation 

between the gripper and the task object and define misalignment to be the difference 

between this desired state and the actual state. We can therefore identify a different 

type of misalignment for each of the aforementioned functions, these being 

1. Pre-capture misalignment - the difference between the object's position in re- 

lation to the gripper when grasping begins and the position it would occupy 

within the gripper if successfully grasped. 

2. Post-capture misalignment - the difference between an objects perceived and 

actual position/orientation with respect to the gripper while grasped. 

3. Post-release misalignment - the difference between the objects intended and 

actual position/orientation with respect to the environment after it has been 

released. 
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For a given gripper and object, pre-capture misalignment determines if and in 

what mode an object will be grasped. Post-capture misalignment determines how 

accurately the objects position can be specified while grasped and post-release mis- 

alignment determines how accurately an object can be repositioned with respect to 

the environment. Thus the ideal gripper is tolerant of substantial pre-grasp misalign- 

ment but has zero post-capture and post-release misalignment. 

A successful grasping system, however, must do more than just cope with mis- 

alignment. We offer the following as a reasonable, partial set of characteristics for a 

science/servicing oriented subsea grasping system. 

1. highly tolerant of pre-capture misalignment (+/- 1 to 2 in. desired) 

2. near zero post-capture misalignment 

3. capable of high accuracy positioning of structured objects (e.g. tools, samplers, 

connectors) despite large manipulation loads 

4. capable of low accuracy positioning of a range of unstructured objects (e.g. 

rocks, mussels, tube worms) 

5. capable of low force grasping of fragile objects (e.g. biological samples, archeo- 

logical artifacts) 

6. robust to corrosion, extreme pressure, thermal expansion, impact loads and 

operation in the presence of sand and sediment particles). 

2.4    Issues concerning misalignment tolerant grip- 

per/handle systems 

Positive location of the handle: Since the handle and gripper are initially misaligned, 

positive location requires that the handle and/or the gripper move. Assume for the 
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moment that only the handle shifts position. To properly align the contact forces 

between the gripper and handle during capture must induce relative motion which 

drives the handle to the desired relative position. Three types of forces will act on the 

handle; contact normal forces //v, contact friction forces fjr and constraint forces fc 

acting on the object attached to the handle. Positively locating the handle requires, 

coarsely speaking, that fN > ffr + fc and that the induced motion move the handle 

towards its desired alignment (ideally the desired alignment is the only possible grasp 

mode for the handle). Therefore, we must select a finger and handle geometry which 

produces the desired forces and must provide the gripper with enough actuation force 

to ensure that the desired motion occurs. 

Efficiently resisting manipulation loads: Having aligned the handle the gripper's 

function becomes containment, i.e. maintaining alignment despite the application of 

large manipulation loads. The gripper/handle system effectively "maps" the 5R(6) 

vector space of handle loads into the R(m) vector space of actuator torques (where 

m is the number of actuators in the gripper). From linear algebra, therefore, we 

conclude that it is possible to resist up to a üft(6 — p) vector space of applied forces 

with no actuator torque where p < m is the number of non-redundant actuators in the 

gripper. Such applied forces lie in the null space of the actuator space and represent 

loads which are entirely borne by the structure of the gripper. We refer to these loads 

as actuator-orthogonal loads. Assuming finite actuator output, we can maximize a 

gripper's ability to resist manipulation loads by minimizing the number of actuators 

used and by selecting a finger/handle geometry which maximizes the dimension of 

the actuator orthogonal load space. 

2.5    Mislignment Tolerant Grasping of Cylinders 

Figure 2-1 shows a 1 DOF gripper design which, as we will show, positively locates 

cylinders despite significant pre-grasp misalignment. To show this we first find the 
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Figure 2-1: 1 DOF gripper which positively locates grasped cylinders: a. during 
capture, plan view. b. cylinder fully grasped, plan view. c. cylinder fully grasped, 
isometric view showing that each of the grippers "fingers" actually consists of two 
plates separated in the z-direction. 

cylinders' location when fully grasped and then determine the conditions required for 

the cylinder to reach this position during grasping. 

Location when fully grasped: Due to the symmetric motion of the fingers (they 

are linked so that they always rotate through equal but opposite angles) the cylinder's 

final position Cf lies a distance Hg directly above the midpoint between the two finger 

pivot points (see Figure 2-2). To bring the cylinder to this position each finger must 

rotate through an angle of 6g. Solving for 6g and height Hg we obtain 

6g = arccos (^) - 7 (2.1) 

Hg = Ä sin (0S+ 7) (2.2) 
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where D is the distance between the finger pivot axes, R is the length of the line 

drawn between a finger's axis and the cylinder axis when the cylinder is firmly seated 

against the internal corner of the finger (as shown in Figure 2-2), and 7 is the angle 

between this line and a line drawn between the finger pivot axes. 

Alignment force during capture: To prove that the cylinder reaches this position 

we look at the forces acting on the system while the gripper is closing. Initially only 

one finger will contact the cylinder. If the closing torque is large enough to overcome 

the external forces acting on the cylinder, the cylinder will be pushed towards the 

centerline of the gripper. During this motion the cylinder will also slide and/or roll 

along the finger surface, resulting in two possible grasp scenarios. In the first the 

cylinder contacts the finger's outer end before full closure. In this case motion in 

relation to the finger ceases and the cylinder travels directly to the final location 

given by equations 2.1 and 2.2 along a circular arc of radius R . Successful grasping 

in this scenario requires only that the closure torque be great enough to overcome the 

external loads acting on the cylinder. 

In the second scenario the cylinder comes into contact with both fingers prior to 

full closure (see Figure 2-3a ). Forcing the cylinder to its final location now requires 

that net outward force applied by the fingers exceeds the sum of the external loads 

and the friction forces associated with the contact forces. To gauge the grippers 

ability to do this we will examine the outward force F it can apply to the cylinder. 

Recalling that the fingers are linked by a 1:1 gear train we find that the relationship 

between the closure torque and the contact normal forces iV in Figure 2-3a. and b. 

is 

M = 2Ns + 2nsNh (2.3) 

where 

s = s1+s2 = (h + r)t<m9+-  (2.4) 
2 cos 0 
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tan<)> 

R = J(h + r)2 + (l-d)2 Y = asm H¥) 

Figure 2-2: Grasping geometry showing the cylinder's final position and the cylinder's 
capture range (shaded area). Successful grasping is guaranteed if the cylinder's center 
lies in this region and the external loads meet the conditions discussed in the text. 

and /xs is the static coefficient of friction between the fingers and the cylinder. 

Balancing the forces acting on the cylinder (Figure 2-3b.) we find that the cylinder 

will not move unless 

F <2N cos 9 (1 - ßs tan 0) (2.5) 

At equilibrium we may write equation 2.5 as an equality. Using equations 2.3 and 

2.4 to eliminate N and s, we find that the relationship between the outward force F 

resulting from a closure torque M can be written in dimensionless form as 

FD (l-//tan0)cos20 (2.6) 

To show that a given version of the gripper positively locates cylinders we must 

show that the dimensionless outward force given by equation 2.6 is greater than zero 

for any closure angle 9g encountered during the grasp. 
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Figure 2-3: Forces acting on a cylinder in contact with both fingers as the gripper 
closes, a. Geometry and external forces ( i.e. finger closure torque M and a purely 
vertical external force acting at the cylinder center F ) b. detail of frictional, normal 
and external loads acting on the cylinder ( 6 is the angle between a line connecting 
the contacting surface of the finger). 

The outward force F decreases as the closure angle 6g increases. To see this 

consider the slip condition ( equation 2.5 ) when F = 0 (i.e. when there is no 

external load on the cylinder).Rewriting equation 2.5 for this case we find that the 

cylinder will not move unless 

Itanfll < - or cos0 > 0 (2.7) 

The degree to which these conditions are satisfied is maximized when 0 = 0 (i.e. 

when the fingers are fully open) and decreases steadily as 0 increases. This implies 

that the minimum outward force occurs at the maximum closure angle encountered 

in the grasp, i.e. that we should replace 9g by the final closure angle in equation 2.6 

to verify that F is always positive during a given grasp. 

We may now determine the worst case (i.e. minimum) outward force F generated 
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by the gripper during the grasp. Figure 2-4 shows the dimensionless version of F as a 

function of the dimensionless cylinder radius and various values of//s for the proposed 

design (i.e. £ = 1.5, £ = 3.05, <f> = § ) The given design is seen to be capable of 

positively locating any cylinder whose radius is below the maximum graspable radius 

( £ « 1.5 ) as long as ns < 0.7 and the applied dimensionless load does not exceed 

the associated value given in Figure 2-4. Note, however, that the ability to positively 

locate a cylinder decreases as the size of the cylinder decreases and as the magnitude 

of ßs increases. 

Capture range: By the above arguments one can deduce that positive location of 

a cylinder is guaranteed if its axis lies within the shaded area shown in Figure 2-2. 

For the proposed design the width of this region's base is 21 - D - 2r. For example, 

if r = 1.0 in. the width of the capture region's base is 6.27 in. The curves defining 

the region's upper bounds are circular arcs of radius R centered about each finger's 

pivot point. Thus a cylinder's capture range increases as we decrease its radius but, 

as shown in the preceding section, its ability to be positively located decreases. 

Ability to resist applied loads: The grasped cylinder is not well suited to resist- 

ing manipulation loads. For instance, constraining the cylinder's rotation about or 

translation along its axis depends entirely on frictional forces. In the next section 

we present a modified gripper and handle design which avoids these drawbacks but 

retains the desirable feature of positive location of the handle. 

2.6    Expanding the actuator-orthogonal load space 

Figure 2-5 shows a modified finger design grasping a handle made from two cylinders 

attached by a rod. We now consider the properties of this system. 

Ability to resist applied loads: Assuming zero clearance between the cylinders 

and the notches, the handle requires no actuator torque to resist z-axis moment or y- 

direction forces when fully grasped by the modified gripper. To see this note that each 
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0.6 0.8 
Dimensionless radius r/D 

Figure 2-4: The minimum dimensionless (quasi-static) outward force applied to a 
cylinder during closure of the gripper as a function of the dimensionless radius of 
the cylinder to be grasped and the associated static coefficient of friction. Com- 
binations for which ^ß- > 0 are guaranteed, in the absence of external forces, to 
reach the desired final position/orientation. Combinations for which ^ß- < 0 indicate 
that the cylinder reaches static equilibrium (i.e. jams) prior to reaching the desired 
position/orientation. 
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finger notch is comprised of circular arcs centered on the given finger's axis of rotation 

(see Figure 2-2a). As such the line of action of any contact forces associated with 

these arc surfaces passes through the finger's axis of rotation and therefore induces 

no torque about the finger axis. 

In reality, however, there is clearance between the cylinders and the notches. 

Nonetheless, the handle is held with no play. The contact forces associated with the 

ends of the notches (see Figure 2-5) force the handle against the outer arc R0 of the 

notches. Since these contact forces do not pass through the finger pivot points, forces 

applied to the handle tend to wedge the gripper open. For example, a large enough 

load in the negative y-direction will wedge the gripper open. The handle will move 

downward slightly but stops when it contacts the notch's inner surface Ri because the 

contact forces once again pass through the finger's axes of rotation. Thus the handle 

is positively located for loads less than a certain threshold (defined by the maximum 

closure torque). For larger loads the handle shifts very slightly but remains solidly 

grasped. 

Location when fully grasped: Employing arguments similar to those used for 

the cylinder it can be shown this handle positively locates in both the original and 

modified grippers. When fully grasped by the modified gripper the handle is centered 

between the two fingers at a height of H = )J(R0 - rf - (^)   (see Figure 2-5b). 

Release of the handle: Because the notches are circular arcs, opening the gripper 

causes it to disengage from the handle without perturbing the handle's position. 

2.7    Additional positively locating handles 

The modified gripper design is compatible with a wide range of handle designs, each 

possessing different alignment and load resisting properties. Figure 2-6 shows four 

handles which positively locate to different degrees when grasped. The X-handles 

positively locate in relation to the gripper in all 6 D.O.F., the H-handle positively 
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Figure 2-5: Modified gripper design a. H-handle during capture b. H-handle fully 
grasped, plan view. c. H-handle, isometric view 

locates in 5 D.O.F. and the cylinder positively locate in four D.O.F. In general, 

handles which constrain more degrees of freedom are more sensitive to misalignment, 

e.g. the X-handles can only be grasped for a limited range of 6Z values while the 

cylinder can be successfully grasped for any value of 0Z . By selecting an appropriate 

handle and properly speciying its dimensions we can tailor the characteristics of a 

handle to match the specific needs of a given task, thereby enhancing manipulation 

efficiency. (Note: several other positively locating handle designs have been omitted 

for the sake of brevity). 

Table 2.1 summarizes the properties of these handles and gives very rough es- 

timates for acceptable misalignment for each handle in the various directions. The 

actual capture range for each handle is a complicated function of the handle dimen- 

sions and its relative position/orientation in relation to the gripper. The values given 

in the table are estimates of the tolerable misalignment in each D.O.F. when the 

handle is nominally centered in the actual capture range 
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b. H-handle 

c. Cylinder d. Notched X-handle 

Figure 2-6: Additional handles which positively locate in a. 6 D.O.F., b. 5 D.O.F., 
c. 4 D.O.F. and d. 6 D.O.F.. 

2.8    Field testing 

A subsea grasping system embodying these concepts has been constructed and in- 

tegrated into the manipulation subsystem of the Jason remotely operated vehicle 

(ROV). The Jason vehicle is an unmanned, tethered system which is teleoperated 

from a surface support ship. The grasping system was first used during voyage leg 

KN 145-19 of the research vessel R/V Knorr operated by the Woods Hole Oceano- 

graphic Institution. This was a 6 week research cruise organized by Chief Scientist Dr. 

Daniel J. Fornari to study the mid-Atlantic ridge (depth: 1700 m) in the summer of 

1996. The main objective of the manipulation portion of this cruise was the collection 

of water samples, geological samples and biological samples from hydrothermal vents 

located in the Lucky Strike area of the ridge. Hydrothermal vents are essentially deep 

sea hot water geysers spewing turbulent plumes of super-heated ( 300 C) sea water 

into the ambient 4 C ocean bottom water 

Figure 2-7 shows a vehicle-eye view of a fully loaded elevator platform used to 

transfer equipment and samples between the surface and the ocean floor. Prior to the 
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Handle X y z öx 0y 0, 

Notched X 
X X X X X X 

X X X X X 

±1.5 ±1.2 ±2.0 — ±25 deg — 

X 
X X X X X X 

X X X 

±1.5 ±1.2 ±2.0 — ±25 deg — 

H 
X X X X X 

X X X X 
X 

±1.5 ±1.2 arb. — ±25 deg — 

Cylinder 
X X X X 

X X 
±2.1 ±0.8 arb. ±23 deg ±40 deg. arb. 

Table 2.1: Properties for the Handles shown in Figure 2-6. Notes: 1. X indicates 
that the given D.O.F. has the given property. 2. "Friction" means the given D.O.F. 
is constrained by friction alone. 3. All capture ranges are given in inches and are 
estimated for a point at a center of the capture range. 4. — means no good estimate 
available. 5. arb. means a successful grasp can be obtained for any value of the 
D.O.F. 
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use of elevator platforms vehicle mission lengths were limited by how much equipment 

the vehicle could carry and all material transfer between the work site and the surface 

required recovery of the vehicle. Using free falling/free ascending elevator platforms 

enables the vehicle to remain on-site and work continuously. The success of this 

approach depends strongly on the manipulator's ability to efficiently grasp objects 

since the manipulator must transfer all equipment and samples between the platform 

and the vehicle. 

Two of the tasks required sampling of unstructured objects. Figure 2-8 shows the 

gripper grasping a sulfide rock sample recovered from the ocean floor. Other rock 

samples were collected by grasping outcroppings on vent mounds and breaking them 

free. Over one hundred pounds of rock samples were collected during the cruise. 

Figure 2-9 shows the manipulator collecting a clump of vent dwelling mussels. Both 

types of samples were deposited into hinged top bio-boxes which were subsequently 

transferred back to the elevator platforms. 

The remaining tasks largely involved interaction with structured objects. In Fig- 

ure 2-10 the manipulator takes a sediment sample by plunging a core tube sampler 

into the bottom (returning the sampler to its sleeve fit holster prevents the sediment 

from dislodging from the tube during recovery). This sampler exemplifies the idea of 

matching the handle to the task. Being axially symmetric, the quality of the sediment 

sample is independent of the orientation of the sampler about this axis. This permits 

the use of a cylinder type handle which is more compact and misalignment tolerant 

than either the H or X type handles. 

In Figure 2-11 the operator uses the shaft of an X-type handle as a hammer and 

prybar to break rock away from a vent to enlarge the orifice of a plume in preparation 

for sampling of the plume water. The X-type handle best addresses the need to resist 

the associated forces (i.e. large magnitudes, arbitrary directions). Video from the task 

site shows that the X-handle remained firmly grasped without shifting throughout this 

procedure. 
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Finally, Figure 2-12 shows the gripper grasping a vent water sampler. Sampling 

vent water was probably the most demanding grasping task performed during the 

cruise because it requires that the sampler be precisely positioned with respect to the 

gripper despite the application of large forces to trigger the sampler. 

Vent water sampling proceeds as follows. When the operator grasps a water sam- 

pler electromagnetic coils in the gripper and the sampler are brought into alignment, 

enabling the inductive communication of water temperature data from a sampler to 

the vehicle. Having grasped a sampler, the operator positions its sampling tube in 

the enlarged plume orifice, locates the hottest portion of the plume and then triggers 

the spring-loaded sampling bottle to take a sample 

Triggering the sampler requires the gripper to resist a force of 50 to 75 lbf. and 

a moment of 175 to 260 in.-lbf. torque. Any shifting of the handle in relation to the 

gripper can ruin the sample either by breaking the inductive link (causing the loss of 

temperature data) or by changing the position of the samplers inlet tubes (the ends 

of the sampler tubes extend two feet in front of the plane of the handle. In addition, 

the water temperature varies dramatically with position within the plume due to the 

violent turbulent mixing taking place between the superheated plume water and the 

near zero ambient sea water). The positive location and actuator orthogonal load 

characteristics of the X-handle enabled the collection of continuous temperature data 

throughout the triggering and sampling process with no perceptible motion of the 

sampler inlet tube. 

Since the initial field deployment the grasping system has been used for a wide 

variety of additional ocean science tasks at depths exceeding 5000 meters. These 

tasks the include mating and unmating of undersea electrical connectors during the 

installation and testing of the Hawaii Ocean Observatory, excavating sediment and 

precisely placing seismometers on the ocean floor, and the recovery of archeological 

artifacts from ancient ship wrecks in the abyssal plane of the Mediterranean. 
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Figure 2-7: Elevator platform loaded with core tubes, water samplers and bio-boxes. 
Elevator platforms transfer tools and samples between the surface and the work site, 
enabling the vehicle to remain on site indefinitely. The vehicle operator uses the 
manipulator to transfer all material between the vehicle and the elevator 

2.9    Conclusions 

Misalignment between a robots gripper and its task object cannot be avoided in 

subsea manipulation. Significant misalignment tolerance is essential to the efficient 

performance of manipulation tasks. The grasping system presented in this paper 

represents an attempt to address the grasping needs of manned submersible, ROV 

and AUV based manipulation systems. The system is robust to misalignment and 

manipulation loads and offers substantial flexibility in adapting to the needs of differ- 

ent tasks. Finally, the concepts presented here apply equally well to the problem of 

docking a vehicle to a separate structure. A scaled version of the grasping mechanism 

could serve as a flexible, simple and precise vehicle docking mechanism. 
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Figure 2-8: Gripper grasping sulfide rock sample. The operator uses the gripper to 
break samples off from the vent structure or to pick up samples lying on the bottom 

Figure 2-9: Gripper collecting mussel samples. Mussel samples are subsequently 
placed in a bio-box on the vehicle and eventually the full bio-box is transferred back 
to the elevator platform and replaced with an empty bio-box. 

52 



Figure 2-10: Gripper grasping core tube sampler. Plunging the sampler into the 
sediment collects a cylindrical sample of bottom material. The full core tube is 
placed into a sleeve fit holster for eventual return to an elevator platform. (Outline 
added by authors.). 

Figure 2-11: Gripper using an X-handle to enlarge plume orifice.   Vent orifices are 
enlarged to facilitate sampling of the plume water. 

53 



Figure 2-12: Gripper grasping water sampler. An X-handle attached to the sampler 
permits easy, secure grasping of the sampler. After placing the ends of the sampling 
tubes into the enlarged vent orifice the operator triggers the bottle to collect a sample 
of the 300 + degree Centigrade plume water. (Outline added by authors). 
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Part II 

Minimizing System Contributions 

to Misalignment 
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Chapter 3 

Introduction 

To understand the motivation for the work presented in Part II, consider the problem 

shown in Figure 3-1 of using a manipulator arm attached to a free-flying underwater 

vehicle to accurately position an object or tool relative to a fixed underwater struc- 

ture (for example, the vent water sampling task described in Chapter 2). One way 

to perform this task is to position the vehicle adjacent to the structure and try to 

position the object while hovering. Any forces applied by the manipulator to the 

environment result in equal and opposite reaction loads being applied to the vehicle. 

These reaction loads (in addition to loads due to water currents and/or the vehicle 

umbilical tether) tend to disturb the vehicle position, which in turn affects the po- 

sition of the manipulator relative to the environment. This greatly complicates the 

completion of manipulation tasks. 

To avoid this problem one could rigidly attach (i.e. dock) the vehicle to the 

structure. Docking, however, is only an option for tasks where we have the forethought 

and ability to install a docking fixture in the proper position and orientation ahead 

of time. A more flexible, intermediate option is to drive the vehicle up against the 

structure and exploit the contact forces between the vehicle and structure to, in effect, 

"contact dock" the vehicle. The contact forces constrain vehicle motion in certain 

directions but leave other vehicle motions unconstrained, yielding less misalignment 
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Hovering Exploiting Contact 

W 

Figure 3-1: Remotely Operated Vehicle (ROV) based manipulator being used to 
perform a sampling task. In one case the vehicle hovers while the task is performed, 
in the other the vehicle exploits contact between the vehicle and a structure in the 
environment to stabilize the vehicle against manipulator reaction loads. 

than hovering but much more flexibility than docking. The constraints imposed by 

contact, however, dramatically change the dynamics of the vehicle response to the 

thrust forces generated by its actuators. To maintain adequate control (or even 

stability) of the vehicle's remaining, unconstrained degrees of freedom the models 

used by the vehicle controller and, if applicable, by higher level task planning or 

supervisory control systems, must be updated to reflect these changes. Ideally the 

vehicle system should be able to perform this identification process automatically 

with no human intervention. 

The remainder of this thesis considers the problem of automatically identifying 

the vehicle contact state ( i.e. the locations of the points of contact (if any) and the 

resulting constrained and unconstrained degrees of freedom) from vehicle sensor data. 

In preparation, we briefly review existing, related work in the field and articulate how 

the contributions of this thesis complement this existing body of work. 
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3.1    Related Work 

3.1.1 Control of Free-Flying Manipulation Systems 

Numerous controllers for underwater vehicles [12, 21, 33, 34] have been developed but 

almost all focus exclusively on the control of a fully unconstrained vehicle . A related 

application, the control of manipulators mounted to free-flying space vehicles has been 

studied extensively [1, 8, 10, 29, 17], but this work also focuses almost exclusively on 

trajectory control of the manipulator endpoint when neither the manipulator nor the 

vehicle contact other objects in the environment. 

This thesis considers a different problem, that of a vehicle partially constrained by 

contact with fixed objects in the environment. Specifically, we focus on determining 

the vehicle's contact state from the measurements of the vehicle's velocity and the 

net contact force experienced by the vehicle. 

3.1.2 Compliant Motion Control 

Fundamentally, a vehicle interacting with fixed environmental structures differs little 

from a manipulator interacting with fixed structures in its environment; both are 

examples of Compliant Motion Control, i.e. the control of a robot in contact with 

the environment [3]. Consequently, the contact identification scheme presented in 

this thesis, while described in terms of the vehicle problem, applies equally well to 

the general compliant motion control problem. The equivalency of the problems also 

permits us to draw upon the broad body of existing work in compliant motion control. 

In a perfect world, compliant motion control strategies would be unnecessary. If 

we had perfect knowledge of the geometry and physical properties (e.g. stiffness, 

coefficient of friction, inertia properties, etc.) of the manipulator system and the 

environment and if we had perfect control of the manipulator position, we could 

perform any task by simply controlling the position of the manipulator. In the real 

world, however, our knowledge is far from perfect.   For free (i.e.   unconstrained) 
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motions of the manipulator, small position errors, while undesirable, have little or 

no effect on the relationship between manipulator actuator forces and the resulting 

motion of the manipulator (we refer to this relationship as the manipulator model). 

When the manipulator is in contact (or nearly so) small position errors can lead 

to dramatic changes in the manipulator model because, due to the (typically) high 

stiffness of the manipulator and environment, very small position errors can result in 

very large contact forces. Thus very small errors in our knowledge of the manipulator 

or environmental geometry can lead to catastrophic results. 

Compliant motion control strategies overcome this problem by minimizing the 

impact of errors in our knowledge of the system geometry. Two basic approaches have 

emerged. The Hybrid Control strategy introduced by Raibert and Craig [19] assumes 

that we know the directions in which contact constrains a manipulator's motion and 

partitions the overall control of the manipulator into two mutually orthogonal control 

problems; the control offerees in the constrained directions and the control of position 

in the unconstrained directions. As long as the assumed constraints closely match the 

actual constraints, errors in the position control sub-problem have minimal impact on 

the force control sub-problem, and vice versa. This work is based upon the concepts 

of natural and artificial constraints presented by Mason [18]. 

The Impedance Control Strategy presented by Hogan [14] imposes, through design 

of the controller, a set of desired physical properties (i.e. generalized inertia, damping 

and stiffness) on a manipulator which specify the end effector's deviation from a 

reference position or trajectory in response to disturbance loads. Specifying low 

impedance in constrained directions and high impedance in unconstrained directions 

minimizes the impact of geometric uncertainty while permitting accurate position 

control in the unconstrained directions. An early example of an impedance type 

controller was the active stiffness control presented by Salisbury [22]. 

Note that both approaches assume that we know the directions in which the 

environment constrains the manipulator. As such, these strategies cannot be used in 
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unstructured environments (i.e. environments where we have little or no knowledge 

of the geometry of objects and environment) unless we have some means by which 

we can determine this information. The contact identification technique presented in 

this thesis enables the use of these established compliant motion control techniques in 

unstructured environments by determining a moving object's constrained directions 

(and, in general, the locations of it's points of contact with the environment) from 

measurements of the object's position, velocity and the net force experienced by 

the object as a result of contact with the environment. Figure 3-2 shows how such 

a contact identification system could be integrated with a hybrid controller and a 

higher level controller. Note that the role of the identification system is that of a 

sensor: it does not directly update the hybrid controller constraint information, it 

simply makes information available to the higher level controller. The higher level 

controller decides, based on the task, what action (if any) to take in response to this 

information. This thesis focuses exclusively on the problem of identification. 

3.1.3    Bracing 

The motivating example for this thesis, that of a vehicle exploiting contact with the 

environment to help stabilize the vehicle position against the effects of disturbance 

loads, is an example of bracing. West [32] presented a comprehensive analysis of the 

effects of bracing on a manipulator's kinematic, static and mechanical properties. 

This work, geared towards improving manipulator performance in machining and 

grinding tasks, assumes the constraints imposed by bracing are known and considers 

the problem of determining the ensuing properties and of designing braced manipula- 

tors which yield desired performance characteristics. For the vehicle bracing problem 

considered in this thesis, West's work becomes applicable only after we have identified 

the contact state. The contact identification system presented in this thesis, when 

coupled with a hybrid controller as shown in Figure 3-2, will enable the exploitation 

of bracing in unstructured environments. 
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Figure 3-2: Incorporation of a contact identification system with the hybrid control 
framework. Note that the identification system plays the role of a sensor, i.e. it simply 
makes information available, it does not directly update any system parameters. 

61 



3.1.4 Intrinsic Contact Sensing 

Intrinsic contact sensing uses measurements of the net force and torque experienced by 

an object in conjunction with knowledge of the object's geometry to determine, in the 

case of a single contact force, the location of the contact and local surface properties 

(e.g. surface normal, coefficient of friction, etc.). This concept is introduced by 

Salisbury [23] in the context of the design of a fingertip contact force sensor. Bicci et. 

al. [5] define and solve for the location of the contact centroid for the case of a single 

soft finger in contact with a convex body. These approaches are inherently limited 

to the case of contact at a single point ( or, in the case of the soft finger, at a signle 

contact region). We will find that locating contact points for the case of multiple 

contacts requires that we also consider the velocity of the actuated object. 

3.1.5 Fixturing 

The vehicle bracing problem is similar in some respects to that encountered in work 

on fixturing, i.e. we are considering the constraints imposed on a planar rigid body as 

a result of contact with other fixed, planar rigid bodies. Asada and By [2] presented a 

method to determine if a particular fixture design fully constrains a rigid body. Brost 

and Goldberg [6] present an algorithm which, given a two-dimensional part geometry, 

selects the optimal fixture design from the set of all fixture designs which are possible 

using a modular fixturing system. Schimmels and Peshkin [25] present a method 

for designing a manipulator admittance matrix (to be realized by the manipulator 

controller) which leads to contact forces that always act so as to reduce the degree of 

misalignment between a part and the fixture into which it is being guided. 

The basic formulation of an object's kinematic and static constraint equations 

is identical for the contact identification and fixturing problems, but the underlying 

assumptions are different. In fixturing problems, contacts are generally assumed to 

be frictionless, as any fixture which imposes full constraint for the frictionless case 

is guaranteed to impose full constraint in the case of non-zero friction as well.  In 
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the contact identification problem, however, friction cannot be ignored as it is re- 

sponsible for a significant component of the measured net interaction force. Even 

more fundamentally, fixturing work largely considers the characteristics of a station- 

ary object while contact identification, as we will see, is primarily concerned with the 

relationship between an object's measured interaction force and its measured velocity. 

3.1.6    Contact Identification 

Several researchers have examined the problem of identifying the constraints imposed 

on a rigid body by contact with a fixed environment. Bruyninckx [7] models contact 

by constructing a virtual manipulator for each of a body's points of contact. Each 

virtual manipulator imposes constraints equivalent to those imposed by the contact 

itself. Bruyninckx presents an identification scheme which continuously modifies the 

parameters of the virtual manipulators so that the contact points they represent 

satisfy the reciprocity constraint on the power dissipated at the contact point. The 

technique yields both first order (i.e. contact point location, contact normal) and 

second order (i.e. curvature) properties at the contact points. The technique assumes, 

however, that the number and type of contacts are known and thus is not a fully 

general contact identification system. The technique presented in this thesis differs 

most significantly from Bruyninckx's technique in that makes no assumptions about 

the number or types of contact points and therefore qualifies as a general contact 

identification algorithm. 

Perhaps the most comprehensive contact identification work performed to date 

is that of Eberman [9]. Eberman describes a general identification algorithm which 

makes statistically optimal use of the measured force and velocity data in identifying 

the current contact model. This optimality, however, comes at the cost of a significant 

computational burden, i.e. the need to iteratively solve a set of coupled eigenvalue-like 

problems for each possible contact model in every identification cycle. The technique 

was experimentally verified with excellent results for a point object moving in a planar 
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environment. An extended version covering the motion of polygons was tested using 

simulated data to determine the accuracy with which a body's constrained directions 

could be determined when the correct model was known. No testing of the polygonal 

version's ability identify the correct model from the set of all possible candidate 

models was performed. 

The technique presented in this thesis differs from Eberman's technique in that, by 

settling for a non-optimal solution it reduces the necessary computation per candidate 

model to the solution of two least squares problems. In addition, this thesis presents 

experimental results confirming the technique's ability to determine the true contact 

state from the set of all possible candidate contact models. 

3.2 Problem Statement 

This thesis addresses the problem of determining the contact state of a moving, planar 

rigid body interacting with fixed, planar rigid bodies in its environment. By contact 

state we mean the locations of the points of contact and the directions in which the 

contact constrains the vehicle motion. Table 3.1 summarizes the assumptions upon 

which this work is based. 

3.3 Contributions of Part II 

• A new, computationally efficient technique which identifies the contact state of a 

moving planar rigid body interacting with fixed but otherwise unknown planar 

rigid bodies in its environment. The technique takes as inputs the moving 

body's measured position, velocity and net interaction force and assumes that 

the body's geometry and the coefficient of dynamic friction acting between the 

body and the environment are known. The outputs are the force and velocity 

constraints acting on the vehicle and, in most cases, the locations of the vehicle's 

64 



actual points of contact. 

The concept and formulation of the violation power and violation energy as 

suitable metrics for choosing between possible contact models. 

Experimental verification of the proposed contact identification technique. 

3.4    Overview 

3.4.1    Synopsis of Approach 

Initially, we have no knowledge of the vehicle's true contact state. Every point on 

the vehicle perimeter is a possible contact point, giving rise to an infinite number of 

possible contact scenarios and their corresponding contact models. 

The velocity constraint imposed by a point of contact between the vehicle and 

a fixed object in the environment specifies that the velocity of the vehicle at this 

point must be zero in the direction of the vehicle's outward facing normal at that 

point. Thus, given a measurement of the vehicle velocity and knowledge of the vehicle 

boundary geometry, we can solve for the set of points whose velocities satisfy this 

condition. We refer to the set of all such points as the vehicle's kinematically feasible 

candidate contact points or , for brevity, as the candidate contact points. These are 

the vehicle's only possible points of contact with fixed objects in the environment, i.e. 

the actual contact points must be members of this set. 

By considering all possible unique combinations of candidate contact points we 

can construct the set of all possible kinematically feasible candidate contact models, of 

which the actual contact model is necessarily a member. Each candidate contact model 

consists of a set of presumed contact points and the two sets of constraint equations 

that result from imposing the rigid body contact constraints (discussed in Chapter 

4) to these points. The model's force constraint equations relate the forces acting 

at the presumed contact points to the net force and moment measured by a vehicle 
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mounted force sensor. The model's velocity constraint equations relate the velocities 

at the presumed contact points to the velocity measured by a vehicle mounted velocity 

sensor. 

The vehicle's measured data result from the physical interactions taking place at 

the actual contact points; therefore we expect the measured force and velocity to be 

consistent with (i.e. to satisfy) the force and velocity constraints associated with the 

contact model describing the actual contact state. Since this model is necessarily 

a member of the set of candidate contact models, we can use the degree to which 

the measured data violates each model's constraint equations to identify the correct 

model. 

There are two aspects to the violation of a model's constraint equations; feasibility 

and consistency. Using the the measured force and moment we can solve for the 

corresponding quasistatic reaction loads at each model's presumed contact points. A 

model is quasistatically feasible if these reaction loads satisfy the rigid body constraint 

on each contact force (i.e. that objects can only "push" on each other, they cannot 

"pull"). Thus we discard from consideration all infeasible candidate contact models. 

We test the remaining feasible candidate contact models for consistency. A candi- 

date model's constraint equations define a permissable force space and a permissable 

motion space for the model containing, respectively, the measured forces and velocity 

vectors which the candidate model is physically capable of producing. By projecting 

the measured data into each of these vector spaces we can, for each candidate contact 

model, decompose each measured data vector into the sum of a permissable vector 

and an impermissable vector. The elements of the impermissible vectors indicate 

the degree to which the measured data violate each of a model's force and velocity 

constraint equations. Prom these components we compute the violation power, i.e. 

the power dissipation associated with violation of each of a model's constraint equa- 

tions. By properly combining the individual violation power terms for each constraint 

equation we form a positive definite consistency measure by which we can assess the 
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degree of compatibility between each candidate model and the current measured data 

vectors. The violation power based metric, however, only identifies the best model 

within a model class. To identify which of the best-of-class models is the best overall 

model, we introduce a similar metric based on the violation energy, i.e the work asso- 

ciated with the violation of a models constraint equations during a given incremental 

motion of the vehicle. Finally, we demonstrate experimentally the efficacy of this two 

stage identification process. 

3.4.2    Guide to Part II 

Chapter 4: Identifying Kinematically Feasible Candidate Contact Points 

Reviews the characteristics of rigid body contact. Develops and experimentally 

verifies a technique to identify all candidate contact points, i.e. points on the 

vehicle boundary which, based on kinematic considerations alone, could be in 

contact with a fixed object in the environment. 

Chapter 5: Constructing Kinematically Feasible Candidate Contact Models 

Considers the complete set of candidate contact models which can be con- 

structed from the set of candidate contact points. Describes the five classes 

into which these models fall and articulates the force and velocity constraints 

associated with each model class. 

Chapter 6: Identifying the Best Candidate Contact Model Within Each Class 

Defines the concepts of model feasibility and model consistency. Introduces the 

violation power and demonstrates its essential role in determining model fea- 

sibility, model consistency and in identifying the best candidate model within 

each model class. Articulates why a violation power based approach by itself 

cannot identify the best overall model. 

Chapter 7: Identifying the Best Overall Model Introduces the violation energy 

and demonstrates how, in conjuntion with the results of the violation power 
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based approach, it permits the identification of the best overall model. 

Chapter 8: Experimental Verification Presents experimental results verifying 

the ability of the violation power based approach to identify the best model in 

each class. Presents experimental results verifying the ability of the violation 

energy based approach to identify the best overall model. Investigates the 

sensitivity of the technique to errors in the assumed value of the coefficient of 

dynamic friction. 

Chapter 9: Conclusions Summarizes the key results of the thesis. Discusses future 

work. 

3.4.3    Assumptions 

The assumptions in Table 3.1 apply throughout the remainder of this thesis. 
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Assumptions 

The vehicle ... 

• is a planar, rigid body. 

• has a known, piece-wise continuous, closed bounding curve. 

• has a known coefficient of dynamic friction acting at points of contact 
between the vehicle and the environment which is the same at all points 
of contact. 

Objects in the environment ... 

• are planar, rigid bodies. 

• have unknown piece-wise continuous boundary curves. 

• have unknown position and orientation in relation to a fixed world ref- 
erence frame. 

• are rigidly fixed in relation to the fixed world reference (i.e. their linear 
and angular velocities are known and equal to zero ). 

We can measure ... 

• the vehicle's position and orientation in relation to a fixed world reference 
frame. 

• the vehicle's linear and angular velocity in relation to the fixed world 
reference frame. 

• the aggregate force and moment applied to the vehicle as a result of the 
(unknown) forces acting at the (unknown) points of contact with the 
environment. 

Table 3.1: Assumptions for Part II 
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Chapter 4 

Identifying Kinematically Feasible 

Candidate Contact Points 

4.1    Introduction 

In this chapter we develop and test a technique which, given the geometry and velocity 

of a planar, rigid body (the vehicle) interacting with fixed obstacles (the environment), 

identifies the set of possible contact points on the body. Section 4.2 begins with a 

review of the characteristics of points of contact between rigid bodies. In Section 

4.3 we exploit this information to define and mathematically solve for kinematically 

feasible candidate contact point locations on two types of vehicle boundary curves; 

straight lines and circular arcs. Section 4.4 experimentally investigates the error 

between the computed candidate contact point locations and the actual contact points 

for various contact configurations for a body composed of straight line and circular 

arc boundary curves. 
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Figure 4-1: (a) Two planar rigid bodies in contact, (b) Tangent vector and outward 
facing normal at contact point pB on body B. (c) Tangent vector and outward facing 
normal at contact point PA on body A. 

4.2    Properties of Planar Rigid Body Contact 

Figure 4-1 shows two arbitrary planar rigid bodies A and B in contact at a single 

point. For the time being, consider both bodies to be free to move, i.e neither body 

is fixed. A point pA on the boundary of body A and a point pB on the boundary of 

body B are in contact when 

1. point PA coincides with point pB, i.e. PA = PB 

2. the tangent vectors at points pA and pB are parallel and coincident. 

3. the outward facing normal vectors at points pA and pB are coincident but op- 

posite in direction 

4. the normal component of the relative velocity of points PA and pB is equal to 

zero, i.e. (\PA - vPB) • nPA = {vPA - vPB) • nPB = 0 

5. the force applied to each object through the contact point has a negative com- 

ponent in the direction of that object's outward facing normal at the point of 
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contact, i.e. fPAcontact • nPA < 0 and fPBconiact ■ HpB < 0 (in other words, objects 

can only "push" on each other through a contact, they cannot pull). 

Note that, given characteristic five, two objects with coincident boundary points 

are not considered to be in contact unless the force transmitted between them is 

nonzero. 

4.3    Zero-Normal-Velocity (znv) Points 

Given our assumption that all objects in the environment are fixed, we may treat 

the entire environment as a single rigid body composed of the union of all its com- 

ponent objects. Being fixed in space, the velocity of every point on this aggregate 

environmental object is equal to zero. If we let the vehicle be object A and let the 

environment be object B then characteristic four in the preceding list becomes 

vPA ■ nPA = 0 (4.1) 

The modified characteristic states that the only points on the vehicle boundary 

which could possibly be points of contact with a fixed environment are points which 

have zero velocity in the direction of their local boundary normal. If we know 1) 

the geometry of the vehicle boundary and 2) the linear and angular velocity of a 

point on the vehicle we can solve for this set of points analytically. We refer to these 

points interchangeably as zero-normal-velocity (znv) points or as candidate contact 

points. To solve for the locations of these points we shall exploit the concept of the 

instantaneous center of rotation. 
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4.3.1    The Instantaneous Center of Rotation 

Imagine for the moment that our vehicle has infinite expanse, i.e. it is an infinite 

plane which moves with respect to the fixed world plane. The instantaneous center of 

rotation (ICR) is a unique point (in the moving plane) which has zero linear velocity 

with respect to the fixed plane at the given instant in time. The motion of every 

other point on the moving plane can be represented as resulting from a pure rotation 

of the vehicle about the ICR. Given the velocity of a point p{ in the vehicle plane, 

the velocity of another point pj in that plane is 

Vyvp,=
wvPi + [^Jx]a; (4.2) 

where w\Pj and wvPi are the velocities of points i and j with respect to the fixed 

world frame W, wTij is the vector from pi to Pj, u is the angular velocity of the 

vehicle plane and 

[r<x] -n* 
Tix 

(4.3) 

is a convenient notation for expressing the planar form of the cross product (see 

the Mathematical Notation appendix at the end of this thesis for a more detailed 

discussion of this notation). 

We can rewrite equation 4.2 with respect to an alternate world-fixed frame VW, 

defined to be a frame which conicides, instantaneously, with a corresponding vehicle- 

fixed frame V. In this case we get 

vw. \j=
VWvPi + [vwrijx]u; (4.4) 

where each of the terms is now written with respect to fixed frame VW. 
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To locate the ICR with respect to frame V we set vvPj = vvPlCR = 0 and solve 

for vTij = VTUCR (i.e. the vector from pi to the ICR). If we also let pi be the origin 

of the vehicle fixed frame, the location of the ICR with respect to the vehicle fixed 

frame is 

*ICR 
■Vyo 

Vxo 

(4.5) 

The first term in parentheses is a unit vector, orthogonal to the velocity vector at 

point i, which gives the direction of vri3;. The second term is the positive or negative 

distance between point i and the ICR in the direction of the unit vector. 

There are three special case solutions for vVij. When the magnitude of the linear 

velocity |v'vPi| = 0, the ICR is simply p,. When |vvpJ ^ 0 but u = 0, the unit vector 

is still defined but the magnitude term becomes infinite. If both |yvp.| and u = 0, 

the vehicle is stationary and the ICR does not exist. Note that if we let Pi be the 

origin of the vehicle frame 

Now consider that, instead of being an infinite plane, our vehicle has a finite 

boundary. The ICR still exists, but it will not necessarily lie within the domain of 

the vehicle boundary. 

As stated above, the only points on the boundary that could be in contact with 

fixed objects in the environment are those which have zero velocity in the direction 

of their outward facing normal. Given that the velocity of any point on the vehicle 

is equivalant to pure rotation about the ICR, this condition will be satisfied for 

any boundary point whose normal vector, when extended, passes through the ICR. 

Mathematically, znv points are points on the vehicle boundary which satisfy 

Now consider that, instead of being an infinite plane, our vehicle has a finite 

boundary. The ICR still exists, but it will not necessarily lie within the domain of 

the vehicle boundary. As stated above, the only points on the boundary that could 

be in contact with fixed objects in the environment are those which have zero velocity 
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in the direction of their outward facing normal. Given that the velocity of any point 

on the vehicle is equivalant to pure rotation about the ICR, this condition will be 

satisfied for any boundary point whose normal vector, when extended, passes through 

the ICR. Mathematically, znv points are points on the vehicle boundary which satisfy 

r& = TICR + snun (r6) (4.6) 

where r6 is the position vector of a point on the boundary, un (r6) is the outward 

facing normal vector at that point, and sn is the distance between the ICR and point 

This is illustrated graphically in Figure 4-2.a for a rectangular vehicle with rounded 

corners. Figures 4-2.b through 4-2.d show this vehicle's znv points for several different 

locations of the ICR. To find a given boundary segment's znv point we draw a radial 

line from the ICR to the segment such that the radial line is orthogonal to the 

boundary segment at the point of intersection. 

4.3.2    Locating znv points on straight line boundary segments 

Let us represent points on the line segment as 

< 

Tb = r0 + stut,   0 < s < smax (4.7) 

where r0 is the segment's start point, uf is a unit vector pointing from the start point 

towards the end point, st is the distance between point rb on the line and the start 

point. The normal to the line is everywhere equal to 
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Figure 4-2: The number in each region indicates the number of points on the vehicle 
perimeter (heavy black line) for which vn = 0 when the instantaneous center of 
rotation (ICR) lies within that region. For example, when the ICR is at the indicated 
position there are eight points which have zero velocity in the direction normal to the 
local surface tangent. For the given vehicle state and geometry, these are the only 
possible points of contact with stationary objects in the environment. 
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Using equations 4.7 and 4.8 to eliminate rb and \in (rft), equation 4.6 becomes 

r0 + stut = TICR + snun (4.9) 

Solving for st and sn yields 

sn 

W, [-ut] 

[un], [-ut] 

-1 
(r0 — TICR) 

(r0 - TICR) 

(4.10) 

(4.11) 

Substituting st into Equation 4.7 yields the location of the znv point for the line. 

This znv point is a valid candidate contact point only if 0 < st < smax, i.e. if it 

lies within the domain of the boundary segment. Thus, in general, there is a unique 

znv solution for each line segment which contributes at most one unique candidate 

contact point per line segment. 

The only exception occurs when the angular velocity is equal to 0 AND the linear 

velocity vector is parallel to the direction of the line. In this case, the distance 

between the line and the ICR in the line's normal direction is infinite and as a result 

every point on the line has zero velocity in the normal direction. We will discuss the 

implications of this special case as it relates to the selection of the best contact model 

in chapter 8. 

4.3.3    Locating znv points on circular arc boundary segments 

Figure 4-3 shows a portion of a vehicle boundary which includes an arc segment. The 

arc segment's underlying circle has radius Ra and centerpoint C. The arc segment is 

the portion of the circle obtained by traversing from point s to point e in a clockwise 

fashion. All arcs segments in this thesis are defined in a clockwise sense. 

To find the arc segment's znv points we first find the znv points for the underlying 
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Figure 4-3: There are generally two znv points ( points A and B ) associated with a 
circular arc boundary segment, these being the intersections of the line drawn from 
the ICR to the arc center C with the arc's underlying circle. Only solutions which 
lie within the domain of the arc qualify as candidate contact points. An intersection 
point lies in the domain of the arc if the vector rp from the arc center C to the point 
satisfies the conditions in Equation 4.14 

circle and then determine which, if any, of these lie within the domain of the arc 

segment. The underlying circle's znv points are simply the intersection points between 

an extended line drawn from the ICR through the center point C and the circle itself 

( here, points A and B ). These are the only points on the circle whose local normal 

vectors, when extended, pass through the ICR. Defining un to be a unit vector in the 

direction of this line the znv point locations are 

rc ± Ralln (4.12) 

A given point lies in the domain of an arc segment if its angular position, relative 

to the arc center, falls between the start and end angles. This test is complicated by 

the discontinuity that occurs in the angle returned by the arc-tangent function, i.e. 

arc-tangent functions typically return values that range from -ir to +TT. Assuming an 
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arctangent function of this form, arcs defined in a clockwise fashion have start angles 

which are larger than the end angles except when the arc straddles the discontinuity, 

in which case the start angle is less than the end angle. 

It is more convenient to use a vector based domain test. This approach avoids the 

discontinuity problem. A point on the circle lies in the domain of the arc if, given the 

vector TCp from the arc center C to the point, the following conditions are all true: 

rCp ■ ut3 > 0 (4.13) 

rCp • Una > 0 

vCp • ute < 0 

TCp • U„e > 0 

where \its , u„s and ute , u„e are the tangential and normal unit vectors evaluated at 

points s and e respectively. 

In general there are two znv point solutions for the underlying circle. If we restrict 

arc segments to angular domains of less than IT radians, no more than one of these 

solutions will lie in the segment's domain. For many ICR locations, neither znv point 

will lie in the domain of the arc. This is the case, for example, for the lower left and 

upper right arcs in Figure 4-2 B. Thus, in general, there will be two znv points but, 

at most, one unique candidate contact point per arc segment. 

The only exception occurs when the ICR coincides with the arc center C. In 

this case the number of candidate contact points is infinite as every point on the 

arc segment has zero velocity in the normal direction. Again, we will discuss the 

implications of this special case as it relates to the selection of the best contact model 

in chapter 8. 
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4.3.4    Locating znv points on composite curves 

In principle we can determine the znv locations for a wide variety of geometric el- 

ements. Without loss of generality, however, we restrict ourselves in this thesis to 

considering bodies which are comprised of line and arc segments. For example, the 

vehicle boundary shown in Figure 4-2 A combines four line segments and four arc 

segments to form a smooth, continuous closed composite curve. The set of znv points 

for this vehicle is simply the union of the znv points of its component segments. 

4.4    Experimental Results 

Several experiments were run to investigate the accuracy with which the znv point 

locations could be determined. Figure 4-4 shows the Air Table Vehicle Simulator 

(ATVS) system, the experimental apparatus constructed for these and the other 

experiments performed in this thesis ( see Appendix A for a detailed description 

of the system design and its characteristics ). Briefly, the system consists of a vehicle 

which, supported by three air bearings, moves freely over the surface of a one meter 

square glass topped table. Four miniature steel cables couple the motion of the 

vehicle to that of four brushless D.C. servomotors mounted to the table corners. 

Optical encoders measure the rotation angle and velocity of each motor, enabling the 

determination of the vehicle position/orientation and velocity relative to the table. 

For the experiments in this chapter the vehicle was moved by hand, i.e. the motors 

were only used to maintain nominal tensions in the cables. The vehicle boundary is 

identical to that shown in Figure 4-2 A. 

For these tests, no filtering was performed on the vehicle velocity data, i.e. the 

ICR location and the znv point locations were computed directly from the raw vehicle 

world frame velocity vector. The vehicle world frame velocity vector was computed 

from the vector of motor shaft velocities as described in Appendix A. 
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Figure 4-4: The Air Table Vehicle Simulator (ATVS) system consists of a 0.145 by 
0.29 meter, air bearing supported vehicle which moves freely over the surface of a 
one square meter glass topped table surface. Four miniature steel cables couple the 
motion of the vehicle to that of the four motors mounted to the corners of the table. 
In general, the position and orientation of the vehicle is controlled by coordinating 
the motion of the four motors. The position and orientation, as well as the linear 
and angular velocities, of the vehicle are determined from the motor shaft positions 
and angular velocities as measured by optical encoders mounted to the motor shafts. 
For all the experiments performed in this chapter, however, the vehicle was moved 
by hand, i.e. the actuators were only used to maintain tension in the cables. This 
system is described in greater detail in Appendix A 
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4.4.1 Case 1: One Point Contact with No Slip (Pure Rota- 

tion) 

As shown in Figure 4-6 edge 5 of the the vehicle was brought into contact with corner 

cl of a fixed obstacle in the environment. The vehicle was rotated about this corner 

in a counter clockwise direction from time *i to time t2, at which time the rotation of 

the vehicle was stopped and then reversed. At all times the rotation of the vehicle was 

performed such that no slip occurred at the corner. Figure 4-6 is a plot of the distance 

between the computed location of the edge 5 znv point and the known location of 

the corner. During normal motion the computed location of the znv point is seen to 

stay within 5 mm. of the actual contact point. The error only extends beyond this 

range near the velocity reversal, i.e. when the angular velocity is near zero. Since no 

slip occurs at the contact point, zero angular velocity means that the vehicle is at a 

complete standstill. In such a case the location of the ICR does not exist so the znv 

points do not exist either, so we expect the accuracy with which the znv point tracks 

the actual contact point to degrade. Once the vehicle begins moving in the opposite 

direction, the tracking accuracy returns to the 5 mm. accuracy range. 

4.4.2 Case 2:   One Point Contact with Slip (Rotation and 

Translation) 

In Case 2 edge 5 is again brought into contact with corner cl (see Figure 4-7 ) but this 

time the vehicle is moved such that sliding occurred at the contact point. The overall 

motion involved combined translation and rotation of the vehicle. Motion of the 

vehicle was initiated at time t = 0 and continued until time t2 at which point contact 

with the corner was broken. Figure 4-8 plots the distance between the computed 

location of the znv point for edge 5 and the known location of corner cl, indicating 

that the tracking accuracy is roughly 10 mm during the motion of the vehicle. 
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Figure 4-5: Case 1 Experiment: Edge 5 of the vehicle was brought into contact with 
corner cl of a fixed object in the environment. The vehicle was then rotated about 
this comer such that little or no slip occurred. Initial rotation was in the counter 
clockwise direction, then the rotation was briefly stopped and then reversed, again 
maintaining minimal slip at the contact point 
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Figure 4-6: Case 1 Experiment: Distance between the computed location of the znv 
point for edge 5 and the known position of corner cl. During rotation the znv point 
is seen to track the actual contact point within an accuracy of roughly ±5mm. The 
vehicle velocity goes to zero at times t\ and t2. Very near these times the magnitude 
of the vehicle velocity is too small to yield reliable readings from the velocity sensors, 
leading to poor estimates of the znv point location. As soon as the vehicle begins to 
move again, the error returns to the ±5mm range. 
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Figure 4-7: Case 2 Experiment: Edge 5 of the vehicle was brought into contact with 
corner cl of a stationary object. The vehicle was then moved such that it was in sliding 
contact with the corner, i.e. the motion combined both rotation and translation of 
the vehicle relative to the contact point. 
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Figure 4-8: Case 2 Experiment: Distance between the computed location of the znv 
point for edge 5 and the known position of corner cl. The vehicle was in contact with 
the corner until time tx, at which point contact was broken. The tracking accuracy 
between the znv point and the known contact location is within 10 mm for this trial. 
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4.4.3 Case 3: Two Point Contact (Pure Translation) 

In this trial there is no unique contact point to track on edge 5 ; every point on edge 

5 is a valid candidate contact point. For such motions the technique presented in this 

thesis will not be able to identify the actual contact points. The technique will still be 

able to determine the vehicle's constrained directions however. While edge 5 has no 

unique candidate contact point, both of its adjacent arc segments do. Furthermore, 

the candidate contact points for the arcs bound the infinite set of candidate contact 

points associated with edge 5. The model associated with the two arcs' candidate 

contact points, i.e. model (6,7), imposes force and velocity constraints identical to 

those imposed by any model formed from two distinct points lying on edge 5. Thus, 

with regard to the constraints, all models formed from points on edge 5 are equivalent, 

so we can use any one model to represent the set. A natural choice is the model (6,7). 

We revisit the pure translation case when testing the complete identification system 

in Chapter 8. 

4.4.4 Case 4: Two Point Contact (Rotation and Translation) 

Figure 4-10 shows the vehicle motion during experiment 4. Initially vehicle edge 5 

is in contact with corner cl and vehicle arc 4 is in contact with corner c2 ( we shall 

refer to this contact configuration as simply (4,5) ). At time t = 0 the vehicle begins 

rotating in a clockwise direction, leading to three transitions in contact configuration; 

1. from (4,5) to (3,5) ( i.e. 4-10.a to 4-10 .b ) at time tx 

2. from (3,5) to (3,4) (i.e. 4-10.b to 4-10 x ) at time t2. 

3. from (3,4)to no contact at time t$ 

The upper plot in Figure 4-11 shows the distances between corner cl and the 

znv points for edge 3, edge 5 and arc 4 during the trial while the lower plot shows 

the corresponding distances for corner c2. Prior to the first transition at time tx the 
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actual contact configuration is (4,5) and we see from the plots that the znv points for 

boundary segments edge 5 and arc 4 track the actual contact points quite well. At 

time t\ the contact at corner c2 transitions from boundary segment arc 4 to boundary 

segment edge 3, which is clearly reflected by the crossover of the curves for znv points 

4 and 3 in the upper plot. Between times t\ and t2 the znv point for segment edge 

3 accurately tracks corner one and znv point for edge 5 accurately tracks corner c2. 

The second transition occurs at time t2, after which we see that the znv point data 

again agrees well with the actual contact configuration (3,4). 

4.5    Conclusion 

This chapter presented a means to locate the set of kinematically feasible candidate 

contact points for a moving rigid body. Experiments demonstrated that the positions 

of the appropriate candidate contact points could track the actual contact point (s) 

to within 0.01 meters on a 0.145 by 0.290 meter rectangular rigid body. 
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Figure 4-9: Case 3 Experiment: Edge 5 of the vehicle was brought into full contact 
with a flat wall. This contact was maintained throughout the trial as the vehicle was 
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Figure 4-10: Case 4 Experiment: Arc 4 and edge 5 were initially in contact with 
corners cl and c2 ( we refer to this contact state as (4,5) ). The vehicle was then 
moved such that the contact state transitioned to (3,5) and then to (3,4). 
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Case 4: Distance between comer 1 and selected znv points 

Figure 4-11: Upper plot: Distance between corner cl and the znv points for edge 3, 
arc 4 and edge 5. Lower plot: Distance between corner c2 and the znv points for edge 
3, arc 4 and edge 5. 
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Chapter 5 

Constructing Kinematically 

Feasible Candidate Contact Models 

5.1    Introduction 

The candidate contact points identified in the previous chapter are the only points on 

the vehicle which could possibly be in contact with fixed bodies in the environment. 

This leads to three conclusions: 

1. The actual contact points must be members of the set of candidate contact 

points. 

2. The only possible candidate contact models are those constructed from combi- 

nations of candidate contact points. 

3. The actual contact model must be a member of the set of candidate contact 

models. 

In this chapter we construct the set of candidate contact models, showing that 

there are five classes of candidate contact models for a planar, rigid body interacting 

with fixed planar, rigid bodies in its environment.   By combining the constraints 
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imposed at each of a candidate model's presumed contact points we obtain two sets 

of constraint equations for each candidate model. The model's force constraints are 

a set of quasi-static equilibrium equations which relate forces applied to the vehicle 

at the candidate model's presumed contact points to the corresponding force and 

moment that would be measured by the vehicle's force sensor. The model's motion 

constraints are a set of kinematic equations which relate velocities at the model's 

presumed contact points to the velocity that would be measured by the vehicle velocity 

sensor. To simplify the derivations we assume throughout this thesis, with no loss of 

generality, that both the force and velocity sensors are located at the origin of the 

vehicle fixed reference frame V. We follow a general discussion of the characteristics 

of a model's force and motion constraint equations with detailed derivations of these 

equations for models in each of the five model classes. 

Assumptions 

All of the assumptions made in the introduction to Part II also hold for this chapter. 

5.2    Measuring the Net Contact Induced Force and 

Moment 

To determine which of the candidate points are actual contact points we will need to 

measure the net contact force and moment applied to the vehicle as a result of contact. 

In this section we briefly discuss how this measurement can be performed. Figure 5-1 

shows one possible approach to measuring the net force and moment applied to the 

vehicle as a result of contact with the environment. In the figure three stiff, uniaxial 

load cells attach a rigid frame to the vehicle. The frame completely surrounds the 

vehicle, thus only the frame can contact objects in the environment. Since all forces 

applied to the frame are transmitted to the vehicle via the load cells, we can determine 

the net force and moment applied to the vehicle from the load cell measurements. 
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- pin jointed, uniaxial load ceU 

Figure 5-1: Possible design of an instrumented rigid frame to measure the net force 
and moment applied to the vehicle as a result of contact with objects in the environ- 
ment. The frame is the only part of the vehicle which can come into contact with the 
environment. Three pin-jointed, uniaxial force sensors would rigidly affix the frame 
to the main vehicle structure. The three components of the net force and moment 
applied to the vehicle fx, fy and mz can be determined from the force measurements 
from the three load cells. 

The design shown is just one possible design. In the planar vehicle apparatus used 

to perform the experiments presented in this thesis, the frame was actually attached 

to the vehicle via a commercial 6-axis force-torque sensor ( note: only the fx, fy and 

mz components of the sensor's output were used ). 

For convenience we define the body referenced measured force vector Tm 

j:      = 

Jx 

fy 

mVo 

(5.1) 
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Model Class Dim. of 
permissible 
force space 

Dim. of 
permissible 
vel. space 

No. of 
models 
in class 

Unconstrained 0 3 1 
One Point, with slip 1 2 N 
One Point, no slip 2 1 N 

Two Point 2 1 M 
(N-2)\(2)l 

Fully Constrained 3 0 1 

Table 5.1: The five classes of possible contact models for a rigid, planar body inter- 
acting with fixed rigid, planar bodies in its environment 

Similarly, we define measured velocity vector Vm to be 

v„ 

U) 

(5.2) 

The elements of Vm represent the absolute velocity of the origin of the vehicle fixed 

frame V expressed with respect to an inertial frame which is instantaneously aligned 

with frame V. 

5.3    Model Classes 

In this section we show that there are five classes of possible contact models for a 

planar rigid body interacting with fixed planar, rigid bodies in its environment. These 

classes are characterized by two properties; the number of contact points and whether 

or not slip occurs at each contact point. We also express the number of candidate 

contact models in each class as a function of the number candidate contact points. 

The contact model classes are 

Unconstrained Model Given TV candidate contact points there is one model in 

which none of the candidate points are actual contact points. In this case the 
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vehicle motion is completely unconstrained.  There is only one model in this 

class. 

One Point Contact Models with Slip Given N candidate contact points we can 

formulate N unique models in which the vehicle has a single, sliding point of 

contact with the environment. 

One Point Contact Models with No Slip Given N candidate contact points we 

can formulate N unique models in which the vehicle has a single, non-sliding 

point of contact with the environment. 

Two Point Contact Models Given N candidate contact points there are (Ar_^)
!
!(2), 

unique pairings of candidate contact points. There are three possible slip states 

for each pairing ( i.e. neither point slips, one point slips, or both points slip) 

which implies that there are (JV^;(2), possible two point contact models. How- 

ever, the models associated with two of these slip states can be discarded. Mod- 

els in which neither point slips are actually members of the Fully Constrained 

Models class listed below. Models in which only one point slips are only possible 

if the fixed objects in the environment have very specific and extremely precise 

geometry. In fact, it would be very difficult to purposefully fabricate parts 

which could realize these contact states. Therefore we also ignore the models 

associated with this slip state. Thus we consider only the (N^l{2)l models in 

which both points slip. 

Fully Constrained Models When the vehicle is fully constrained its linear and 

angular velocities are zero. The identification technique we develop in this 

thesis cannot identify the correct contact points when the vehicle is not moving, 

it cannot distinguish one member of the Fully Constrained Contact Models 

from another. The best we can do is to correctly identify that the vehicle is 

fully constrained. Thus we treat the fully constrained models class as a single 

candidate model. 
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5.4    The Permissible Force Space 

We will find that the force constraint equations for any contact model can be written 

in the form 

0=P   =   Afc (5.3) 

where fc is an n x 1 vector containing n independent parameters which fully describe 

the forces acting on the vehicle at the model's presumed contact points, A is a 3 x n 

matrix containing the coefficients of the force constraint equations and Tp is a 3 x 1 

vector containing the corresponding force and moment that would be measured by a 

force sensor located at the origin of frame V. The value of n depends on the class of 

the candidate contact model as reflected in Table 5.1. 

Equation 5.3 is a linear mapping from the space of forces fc G Rn applied at the 

model's presumed contact points into the space of possible measured forces Tm G R3. 

This mapping partitions the space of possible measured forces Fm G R3 into two 

mutually orthogonal subspaces. A model's permissible force space is the n dimensional 

subspace of possible measured force vectors Tm for which solutions of the model's 

force constraint equations exist; mathematically, the permissible force space is the 

column space of A. A model's impermissible force space is the (3 - n) dimensional 

subspace of possible measured force vectors Tm which the candidate contact model 

is physically incapable of generating; mathematically, the impermissible force space 

is the left null space of A. Together, these two subspaces span the space of possible 

measured force vectors Tm. Therefore an arbitrary measured force vector Tm can 

be written as 

Fm = Tp + Ti (5.4) 

where TP is a permissible component which resides wholely within the model's per- 
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missible force space and Ti is an impermissible component which resides wholely in 

the model's impermissible force space. 

Equation 5.4 implies that we can decompose the measured force vector 0=m into 

a permissible and impermissible component for each candidate contact model. The 

magnitude of the resulting impermissible component gives an indication of the the 

model's compatibility with the observed measurement Tm, but, by itself, cannot 

identify the correct model. To see this, consider that the measured force vector J=m 

is not arbitrary; it results from the actual state of contact between the vehicle and 

the environment and therefore must reside entirely within the permissible force space 

of the contact model describing this contact state (i.e. the correct contact model). 

Therefore we expect- the decomposition of jFm associated with the correct contact 

model to yield, in an ideal world, Ti = 0. This characteristic, however, is not unique 

to the correct model; for example, we will find that the impermissible force component 

for the Fully Constrained model is always equal to zero. 

In section 6.2 we show how to decompose Tm into its permissible and impermis- 

sible components for each candidate contact model and how to use these components 

in selecting the correct candidate contact model. 

5.5    The Permissible Velocity Space 

We will find that the velocity constraint equations for each candidate contact model 

can be written in the form 

VP   =   Bvc (5.5) 

where vc is an (3 - n) x 1 vector containing (3 - n) independent parameters which 

fully describe the vehicle's constrained motion under the given model (typically these 

are velocities at the contact points), B is a 3 x (3 - n) matrix containing the coeffi- 

cients of the motion constraint equations, Vp is a 3 x 1 vector containing the linear 
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and angular velocity of the origin of frame V and n is, as denned above, the number 

of independent parameters required to required to describe the contact point forces 

in the force constraint equations. 

The properties of the velocity constraint equations are largely analogous to those 

of the force constraint equations only the dimensions of the permissible and imper- 

missible vector spaces are different. Equation 5.5 is a linear mapping from the space 

of velocities vc € JR(3-n) at the model's presumed contact points into the correspond- 

ing space of measured vehicle velocities Vm € i?3. This mapping partitions the space 

of possible measured velocities Vm G R3 into two mutually orthogonal subspaces. 

A model's permissible velocity space is the (3 — n) dimensional subspace of possible 

measured velocity vectors Vm for which solutions of the model's velocity constraint 

equations exist; mathematically, the permissible velocity space is the column space 

of B. A model's impermissible velocity space is the n dimensional subspace of pos- 

sible measured velocity vectors Vm which are physically impossible under the given 

candidate contact model; mathematically, the impermissible velocity space is the left 

null space of B. Together, these two subspaces span the space of possible measured 

velocity vectors Vm. Therefore an arbitrary measured velocity vector Vm can be 

written as 

Vm = VP + V/ (5.6) 

where Vp is a permissible component which resides wholely within the model's per- 

missible velocity space and V/ is an impermissible component which resides wholely 

in the model's impermissible velocity space. 

Thus we can decompose the the measured velocity vector VTO into permissible 

and impermissible components for each candidate contact model. Were we to do so, 

however, we would discover that the measured velocity vector Vm exactly satisfies the 

velocity constraint equations of every candidate contact model Recall that we found 

the candidate contact points by solving for points on the vehicle boundary whose 
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individual contact constraints were exactly consistent with the measured vehicle ve- 

locity Vm. We derive the velocity constraint equations by combining the velocity 

constraints associated with each candidate contact model's candidate contact points. 

Since Vm exactly satisfies the constraints at every candidate contact point, it also 

exactly satisfies every candidate contact model's velocity constraint equations,i.e. 

V/ = 0 (5.7) 

Thus we also have 

VP = Vm (5-8) 

This characteristic is a dual edged sword; it will greatly simplify the process of 

solving for each model's reaction loads and in decomposing the measured force into 

its permissible and impermissible components in Chapter 6. However, this same 

property prevents the technique presented in that chapter from identifying the best 

overall model (instead, it can only identify the best model in each class). 

In Chapter 7 we overcome this limitation by also considering the incremental 

motion of the vehicle. We consider the constraints on incremental motion of the 

vehicle in the following section. 

5.6    The Permissible Motion Space 

If we multiply both sides of the velocity constraint equations 5.5 by a differential 

length of time dt we obtain the differential motion constraint equations ( referred to 

hereafter as the motion constraint equations) for the vehicle, i.e. 

5XP   =   B<5xc (5.9) 
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where 5xc is an (3 - n) x 1 vector containing (3 - n) independent parameters char- 

acterizing the differential motion of the vehicle's presumed contact points, B is the 

same 3 x (3 - n) matrix used in the velocity constraint equations above, 6XP is a 3 x 1 

vector containing the differential motion of the origin of frame V, and n is, as defined 

above, the number of independent parameters required to describe the contact point 

forces in the force constraint equations. Obviously the differential motion constraints 

share all of the same properties of the velocity constraints, i.e. their permissible and 

impermissible spaces are identical except for the units. 

We cannot measure the differential motion of the vehicle directly, however; we can 

only approximate it using current and previous measurements of the vehicle position 

vector, i.e. we can define the vehicle's incremental motion vector AXm to be 

AXm   =   Xmi-Xm._k (5.10) 

where Xm is the vehicle's current measured position vector and Xm._k a previous 

measured position vector from k time steps in the past. Replacing the differential 

motions 5XP and <5xc with their incremental counterparts AXP and Axc equation 

5.9 becomes 

AXP   =   BAxc (5.11) 

As was the case with the velocity vector, we can decompose the incremental motion 

vector into permissible and impermissible components, i.e. 

AXm = AXP + AXr (5.12) 

Unlike the velocity decomposition, however, AXm will not, in general, exactly 

satisfy the constraint equations. Consequently AXt is not inherently equal to zero. 

Thus using the impermissible component of the incremental motion vector AXm 
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allows us to estimate the degree to which the vehicle's motion in the very recent past 

is consistent with the differential motion constraints. 

5.7    Model Constraint Equations 

In the previous sections we described the general characteristics of a candidate contact 

model based on its force and velocity constraint equations. In this section we derive 

these constraint equations for each class of candidate contact model. 

5.7.1    Unconstrained Model 

Force Constraint Equations 

When fully unconstrained the vehicle makes no contact with the environment. There- 

fore the force constraint equations for the unconstrained model are 

TP   = 

0 

0 

0 

(5.13) 

The permissible force space is a single point, that being the origin of the three dimen- 

sional space of possible vectors TP. Therefore the model requires n = 0 independent 

parameters to describe the (nonexistent) applied loads. 

Motion Constraint Equations 

Any vehicle velocity is permissible under the unconstrained model. Specifying this 

velocity requires n = 3 independent parameters. Since the model has no contact 

points, and therefore no contact point velocities, we select the elements of the vector 

Vm as our three independent velocity parameters. The velocity constraint equations 
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Figure 5-2: (a) Vehicle with a single, sliding point of contact with a fixed rigid 
body in the environment, (b) Absolute velocity of the point on the vehicle which is in 
contact in contact frame coordinates, (c) Forces acting at the contact point in contact 
frame coordinates. When the contact involves sliding, the tangential component 
ft = fj,dsign (vt) fn, so describing the contact force requires only one independent 
parameter: fn. 

for the unconstrained model are then 

V, 

1   0 0 

0   1 0 

0   0 1 

(5.14) 

i.e matrix B is equal to the 3 x 3 identity matrix. 

5.7.2    One Point Contact Models with Slip 

Figure 5-2 shows the vehicle with a single, sliding point of contact with a fixed rigid 

body. The contact occurs at candidate contact point i whose position, relative to the 

vehicle fixed reference frame V, is given by vector r^. 
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Force Constraint Equations 

Assuming a Coulomb model for the friction force that acts at the contact point, the 

tangential and normal components of the contact force f; are related by the following 

equality 

fu =ixdsign{vti)fni (5.15) 

where fj,d > 0 is the (known) dynamic coefficient of friction and vti is the (known) 

tangential component of the absolute velocity of the candidate contact point which 

we compute from the vehicle velocity and geometry. Note that the friction force 

ft. applied to the vehicle acts in the opposite direction of the tangential velocity vu 

for contact forces having feasible normal components (i.e.  for contact forces where 

/»,- < 0). 

Because the contact force passes through the contact point, it induces no moment 

about that point. Relative to the contact frame d the contact force is 

fu 

Jrii 

mc 

0 
Jrii (5.16) 

where 

u/i 

/idsign (vu) 

1 
(5.17) 

gives the direction of the force £ applied to the vehicle at the contact point (note, 

however, that ufi is not a unit vector). Thus the One Contact Point with Slip Models 

require n = 1 independent parameter, /„i? to fully describe the loads applied at the 

contact point. 
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Relating the applied force and moment CFC to the force and moment TP experi- 

enced by the force sensor we obtain the force constraint equations for the One Point 

Contact with Slip models 

TP = 

Jx 

fy = 

mVo 
V 

[TixfRiUf. 
JTli (5.18) 

where R; is the 2 x 2 rotation matrix which transforms vectors from the contact frame 

Q into the sensor frame V (recall that the sensor frame is coincident with the vehicle 

frame V), r{is a 2 x 1 vector giving the position of candidate contact point i relative 

to the vehicle frame V and 

k<x] (5.19) 

as previously defined (see Appendix I for a complete description of this notation). 

Comparing equation 5.18 to equation 5.3 we see that 

A   = 
[rixfRfU/, 

[/nj 

(5.20) 

(5.21) 

Motion Constraint Equations 

The velocity of candidate contact point i in contact frame coordinates can be written 

as 

Vr 

" 
vu r             -i 

*K u Vti 
vni — 

0 1 Ijj 

iü 

(5.22) 
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where u is the vehicle's angular velocity and 

u vu 
1 

0 
(5.23) 

We obtain the motion constraint equations for this class of models by relating the 

contact point velocity VCo 
to the velocity VP experienced by the velocity sensor 

r 
Vx 

RjU^ -[r<x] «t. 
Vy 

0 1 ÜJ 

u 
_ V 

VP 

Comparing equation 5.24 to equation 5.5 we see that 

(5.24) 

0 

id 

fcx] 

1 
(5.25) 

(5.26) 

5.7.3    One Point Contact Models with No Slip 

Figure 5-3.a shows the case of a vehicle in single point contact with the environment 

where no slip occurs at the contact point, i.e. the absolute velocity of the point on 

the vehicle which is in contact is zero. The contact occurs at candidate contact point 

i whose position, relative to the vehicle fixed reference frame V, is given by vector r^. 

Force Constraint Equations 

For the contact scenario shown, static friction is the only mechanism which could so 

constrain the contact point. In this case the tangential and normal components of 

the contact force are no longer related by an equality but by the following inequality 
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Figure 5-3: (a) Vehicle with a single, non-sliding point of contact with a fixed rigid 
body in the environment, (b) Absolute velocity of the point on the vehicle which 
is in contact in contact frame coordinates, (c) Forces acting at the contact point in 
contact frame coordinates. When the contact point is non-sliding, the tangential and 
normal components ft and fn are independent parameters. 

I/til <ßs\fm\ (5.27) 

where /JLS is the (unknown) static coefficient of friction between the vehicle and the 

fixed body. As long as the tangential velocity is zero we must conclude that equation 

5.27 is satisfied, in which case fu and fni are independent variables. 

Again, since the contact force passes through the origin of the contact frame it 

induces no moment about that point. Thus we can write the contact force in contact 

frame C; coordinates as 

Tc   = 

ft 

Jrii 
= 

mc c 

0        0 

fti 

Jrii 
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where 

u/« 

1 

0 
U/n, 

0 

1 
(5.28) 

Thus the One Contact Point with No Slip Models require n = 2 independent param- 

eters, fu and fni, to fully describe the load applied at the contact point. 

Relating the applied force and moment Tc to the force and moment TP experi- 

enced by the force sensor we obtain the force constraint equations for the One Point 

Contact with No Slip models 

fv 
my 

J V 

[nx] RiUfti   [nx] HiUfni 

Comparing equation 5.29 to equation 5.3 we see that 

hi 

Jrii 

(5.29) 

R,; 

L     = 

[riX]TRiU/t.    [TiX}TRiUfni 

fu 

Jrii 

(5.30) 

(5.31) 

Motion Constraint Equations 

In any One Point Contact with No Slip model the vehicle undergoes pure rotation 

about the model's candidate contact point. In this case we can write the motion 

constraint equations directly as 
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Figure 5-4: Vehicle with a two sliding points of contact with a fixed rigid bodies in 
the environment. Since sliding occurs at both contacts, the tangential components of 
the contact forces are fu = Assign (vti) /„. and ftj = /^sign (t^.) fnj, i.e. describing 
the contact forces requires two independent parameter: /n. and /„.. 

VP   = 

- 

Vx 

-frx] 
Vy 

1 
UJ 

L                            J 

L        J V 

U! (5.32) 

Comparing equation 5.32 to equation 5.5 we see that 

-fox] 
1 

fc = M 

(5.33) 

(5.34) 

5.7.4    Two Point Contact Models 

Figure 5-4.a shows the case of a vehicle in two point contact with the environment 

where slip occurs at both points of contact. The contacts occur at candidate contact 
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points * and j whose positions, relative to the vehicle fixed reference frame V, are 

given by vectors r, and r,. 

Force Constraint Equations 

Based on our analysis of the One Contact Point with Slip models, we can write the 

contact forces u^ and u^ acting at candidate contact points i and j as 

'Ci 

fu 
uf, 

Jrii 
0 

mcoi 
Ci 

Fc< = 

Jrii 

f 
Jtj 

Jnj 
= 

0 

. mc°i  . Cj 

Jnj 

(5.35) 

(5.36) 

where 

Ufi = 

Hdßigßivti) 

1 
u/i 

/idsign (ytj) 

1 
(5.37) 

To obtain the net force and moment TP experienced by the force sensor we sum 

the effects of the two contact forces. Thus the force constraint equations for the Two 

Contact Point models can be written as 

Jx 

fv = 

my 
V 

[lixf-RiUfi   [Tixf-RjU^ 

Jrii 

Jnj 

(5.38) 
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Comparing equation 5.38 to equation 5.3 we see that 

[rixfRjU/,   [TiX]TRjUfj 

Jm 

Jn-j 

(5.39) 

(5.40) 

Motion Constraint Equations 

The velocity of candidate contact point i in contact frame coordinates can be written 

as 

V Coi 

■ 

vu r               -i 

vni = 
0 

UJ 

M (5.41) 

where u is the vehicle's angular velocity and 

1 

0 
(5.42) 

We obtain the motion constraint equations for this class of models by relating the 

contact point velocity Vc0i to the velocity Vp experienced by the velocity sensor 

V; 
RiU„; - [riXJj-f: 

n\ VU (5.43) 

Comparing equation 5.43 to equation 5.5 we see that 

B   = 
RiU„,. 

1 

fc      =      [ vu) 

(5.44) 

(5.45) 
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5.7.5    Fully Constrained Model 

Any measured force and moment Tm are permissible under the fully constrained 

model. Specifying this force and moment requires n = 3 independent parameters. 

Since the model has no contact points ( and therefore no contact point velocities), 

we select the elements of the vector Tm as our three independent force parameters. 

The force constraint equations for the fully constrained model are then 

(5.46) 

i.e matrix A is equal to the 3 x 3 identity matrix. 

Motion Constraint Equations 

When fully constrained the vehicle linear and angular velocity are zero.  Therefore 

the motion constraint equations for the fully constrained model are 

1   0 0 

0   1 0 

0   0 1 

V, 

0 

0 

0 

(5.47) 

i.e. the permissible velocity space is a single point, that being the origin of the three 

dimensional space of possible vectors Vp. 

5.8    Conclusion 

This chapter identified the five classes of planar rigid body contact models and de- 

termined, given the number of candidate contact points, the number of candidate 

contact models that must be evaluated in each identification cycle. We derived the 

109 



force and velocity constraint equations for models in each class and showed that each 

model's constraint equations define a permissible force and permissible velocity space 

for the model. In the following chapter we use these vector spaces to decompose the 

measured force and velocity vectors into permissible and impermissible components 

for each model. Using these components we will determine the best candidate contact 

model within each class. 
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Chapter 6 

Identifying the Best Candidate 

Contact Model in Each Class 

6.1    Introduction 

The set of candidate contact points we identified in Chapter 4 are the only points 

on the vehicle perimeter which, from a kinematic perspective, could possibly be in 

contact with the environment. In Chapter 5 we used these points to construct the set 

of candidate contact models, i.e. the set of all possible contact models which involve 

the candidate contact points. Thus the correct contact model must be a member of 

this set. 

In this chapter we attempt to identify the the actual model from the set of candi- 

date models using only the instantaneous force and velocity measurements Tm and 

Vm. We will find that this approach can identify the best candidate model within 

each class, but it cannot identify which of these best-of-class models is the best overall 

model (In Chapter 7 we show how to determine which of the best-of-class models is 

the best overall model). In both cases we select the best candidate contact model 

based on two criteria, feasibility and consistency, which we will define below. The 

basic approach is simple; test each model for feasibility, evaluate each of the feasible 

111 



models for consistency and then pick the most consistent, feasible model. 

6.1.1 Model Feasibility 

There are two aspects to a model's feasibility. The first is kinematic feasibility which 

we have already addressed in the previous two chapters. Models involving contact on a 

given vehicle boundary segment are feasible if and only if the segment's zero normal 

velocity point falls within the domain of the boundary segment. Thus we enforce 

kinematic feasibility by only constructing models involving boundary segments which 

satisfy this condition. 

To determine a model's quasistatic feasibility we must first solve for the quasistatic 

reaction loads at each of the models presumed contact points. In Chapter 4 we noted 

that rigid bodies in contact can only push against each other, they cannot pull. 

Mathematically this means that the contact force experienced by a rigid body must 

have a negative component in the direction of the body's outward facing normal at 

the contact point, i.e 

iTi ■ n, < 0 (6.1) 

where in is the computed reaction load at the model's i'th presumed contact point 

and n; is the outward facing normal of the vehicle at that point. Thus a model is 

quasistatically feasible if and only if the quasistatically computed contact forces at 

each of the models presumed contact points satisfy this condition. Infeasible models 

are discarded from further consideration. Section 6.2 describes in detail how to solve 

for the reaction loads for the remaining models in each model class. 

6.1.2 Model Consistency 

The vehicle's measured data result from the physical interactions taking place at the 

actual contact points.   Therefore, in an ideal world, we expect the measured force 
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and velocity to be perfectly consistent with ( i.e. to exactly satisfy) the force and 

velocity constraints of the contact model describing the actual contact state. Since 

this model is necessarily a member of the set of candidate contact models, we can use 

each model's inconsistency (i.e. the degree to which the measured data violates the 

model's constraint equations) to identify the correct model. 

As shown in the previous chapter, each model has six constraint equations; three 

force constraints and three velocity constraints. These two sets of constraint equa- 

tions define the model's permissible force and permissible velocity spaces, respectively. 

We showed that we can decompose each of the vehicle's measured force and velocity 

vectors Tm and Vm into the sum of a permissible ( TP and VP, respectively) and 

an impermissible component ( J=i and V/, respectively) for each candidate contact 

model. The elements of Ti indicate the degree to which the measured force Tm vio- 

lates each individual force constraint equation, while the elements of Vj indicate the 

degree to which the measured velocity Vm violates each individual velocity constraint 

equation. To evaluate a model's consistency we must construct a consistency mea- 

sure, defined as a single valued scalar function of the elements of the impermissible 

components of the measured data vectors. The impermissible components for any of 

our candidate contact models are 

J=j   =   Tm-Mc (6.2) 

V,   =   0 (6.3) 

where we have combined equations 5.3 and 5.4 to get tFi and we obtained V/ from 

equation 5.7 (recall from Chapter 5 that, because of the way we selected the candidate 

contact points, the measured velocity Vm inherently satisfies the velocity constraints 

of every candidate model, hence V/ = 0). Thus, for instantaneous data, the consis- 

tency measure depends only on violations of a model's force constraint equations. 

We face the following challenges in constructing a viable consistency measure: 
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Dimensional Consistency Each model has six constraint equations (three force 

constraint equations and three motion constraint equations) which have four 

fundamentally different sets of units (i.e. force, moment, linear velocity and 

angular velocity). To combine these terms into a dimensionally sensible single 

valued function we must perform some form of dimensional scaling. 

Relative Weighting Since the violation terms have different units, each scale factor 

must have a different magnitude. In effect, scaling is equivalent to weighting the 

contribution from each equation. We must be very careful to choose a scaling 

which not only achieves dimensional consistency but also imposes physically 

justifiable relative weighting to the different constraint equations. 

Positive Definiteness Our goal is to select the candidate contact model which is 

minimally inconsistent with the measured data. Ideally our consistency measure 

(or, more accurately, our inconsistency measure) should be a positive definite 

function of the constraint violation terms (i.e. the elements of tFi and V/ ). A 

positive definite measure will have a unique minimum of zero which occurs if 

and only if all of the elements of Tj and V/ are zero. Thus the model which 

has the smallest inconsistency measure is guaranteed to be the most consistent 

model. 

Uniqueness It is possible that different contact models could be equally consistent 

with a given set of measured data, i.e. it is possible for models to be equivalent. 

Thus having the smallest inconsistency measure is a necessary but not sufficient 

condition for a candidate model to be the actual model. One path to equivalency 

is for two models to yield the same Fj and V/,which is possible only if their 

permissible force spaces are identical and if they're permissible velocity spaces 

are also identical. Whether this condition is true or not is independent of the 

structure of our consistency measure. It is also possible, however, for two models 

which yield distinct Fj and V/ to produce identical consistency measure values. 
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Whether this occurs depends both on the structure of the measure and on the 

permissible vector spaces of each candidate contact model. 

6.1.3    Approach 

We begin by trying to solve for the reaction loads at each candidate contact model's 

presumed contact points. To do this we must solve each model's force constraint 

equations which, for most candidate contact models, are a set of over determined 

equations. Such equations are generally solved using the method of least squares in 

which we minimize the length of an error vector (in this case, the length of Ti). 

The length of Ti, however, is undefined due to the fact that it's elements do not all 

have the same units. Thus we find that our consistency measure serves not only to 

choose between candidate models but also plays an integral role in solving for each 

models reaction loads and, therefore, in determining the feasibility of each model. 

We introduce the concept of the violation power as a basis for a suitable consistency 

measure and then use this to resolve the units problem in the original least squares 

approach to solving for the reaction loads. Once we know a model's reaction loads, 

we can determine its quasistatic feasibility and we can also compute the permissible 

and impermissible components of the measured force vector. From these we compute 

the value of the consistency measure for each model and we explain why the results 

can only be used to pick the best model within each class of contact models. Finally, 

we discuss the uniqueness of the best model in each class. 

6.2    Contact Point Reaction Loads 

We find a model's contact point reaction loads by solving the model's force constraint 

equations. Given the measured force vector Fm, we seek a solution vector of unknown 
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reaction loads fc such that 

Fi   =   Fm-Mc (6.4) 

yields Tj = 0. 

6.2.1    Problems with a Direct Least Squares Solution for fc 

When A is not square (i.e. for One Point Contact and Two Point Contact models) 

there will, in general, be no solution vector fc for which Tj — 0 for a given measured 

force vector Tm. Therefore we will try to find the solution which comes closest to 

exactly satisying the equations. To do so we form a positive definite, single valued 

error metric r which is zero if and only the solution fc exactly satisfies equations 6.4 

and then select the solution which minimizes r. The most common error metric is 

the square of the length of the error vector Ti, i.e. 

r,2    =   J^Ti (6.5) 

The vector Ti represents the discrepancy between the actual measured force Tm and 

the measurement that a particular set of reaction load parameters fc would produce. 

TIT. combines violations of each individual constraint equation into a single measure 

indicating the degree to which the system of constraint equations is violated. The 

best choice for fc is the vector which minimizes rp. 

Unfortunately, rFI does not have consistent units. To see this we expand equation 

6.5 to get 

rp   =   fl + fl+™$0j (6.6) 

where fXj, fyi and mVoj are the componements of Tj. The error metric rp is the sum 

of two terms which have units of force squared and a third term which has units of 
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moment squared. While each individual term in the sum indicates the degree to which 

its associated constraint equation has been violated, the lack of common dimensions 

renders the sum of these terms meaningless. If we ignore the units and select a solu- 

tion vector based on the minimization of equation 6.5 we are effectively assigning an 

arbitrary relative weighting to the force and moment constraint violations. To avoid 

these problems we must reformulate the problem in a dimensionally consistent frame- 

work which imposes physically justifiable relative weights to the different constraint 

violation terms. A convenient way to achieve both of these objectives is to instead 

minimize the violation power, which we define in the following section. 

6.2.2    Violation Power 

The total instantaneous power dissipated by the contact forces as the vehicle moves 

is 

P = 7Zvm (6-7) 

In section 5.7 we showed that, given a particular candidate contact model and its 

associated force and velocity constraint equations, we can write each of the measured 

data vectors Tm and Vm as the sum of a permissible and an impermissible component, 

i.e. 

?m,=    FP + FI (6-8) 

Vm   =   VP + VT (6.9) 

Using these relations to rewrite 6.7 yields 

p   =   7$Vp + 7%Vi + tfVp + J=5Vi (6.10) 

The first term is the permissible power dissipation, i.e. the portion of the measured 
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power which is consistent with the constraints associated with the presumed contact 

model. We define the violation power to be the sum of the remaining terms i.e. 

Pv   =   FlVj + FjVp + FjVi (6.11) 

The violation power is the portion of the total power dissipation which is physically 

impossible given the constraints of the candidate contact model under consideration. 

The violation power will equal zero when both Ti and Vj are zero, i.e. when the 

candidate contact model is perfectly consistent with the measured data Tm and Vm. 

Because V/ = 0 for every candidate contact model we have constructed ( see section 

5.5), Vp = Vm and equation 6.11 can be further simplified to 

Pv   =   J^Vm (6.12) 

6.2.3    Modified Least Squares Solution 

We return now to the problem of solving for the reaction loads at a candidate contact 

model's presumed contact points. As described above, the violation power is 

Pv   =   ^fVm = Vl^I (6.13) 

=   Vxfxi + Vyfyi + umVoj (6.14) 

Each term in the sum represents the power dissipation associated with the violation 

of a particular constraint equation. We could choose to select the solution vector fc 

which minimizes the square of pv which we can write as 

r   =   rJVmVlF! (6.15) 

Comparing equation 6.15 with equation 6.5 indicates that we have changed the orig- 

inal least squares problem into a weighted least squares pRoblem. While the new r 
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is dimensionally consistent, the weighting matrix formed by VmVm is not positive 

definite. This reflects the fact that the violation power associated with each con- 

straint equation, i.e. the three terms in equation 6.14, can cancel so pv can equal zero 

despite the fact that the individual violation power some of the constraint equations 

are non-zero. 

To rectify this problem we rewrite the error metric r such that it can only be zero 

when all of the individual violation power terms are zero. We can form a vector of 

these terms p„ 

Pv = wVm:Fj (6.16) 

where WVm is a diagonal matrix formed from the elements of the vector Vm, i.e. 

Wv„ 

Using pv we define rPv to be 

Vx 
0 0 

0 Vy 0 

0 0 u 

(6.17) 

'Pv pip« 

=      (Vxfxi)
2 + {Vyfyjf +  (wmVo,)' 

(6.18) 

(6.19) 

Comparing equation 6.19 with equation 6.5 indicates that the new version of r again 

changes the original least squares problem into a weighted least squares problem, but 

the new weighting matrix W£mWVm is now positive definite as long as the elements 

of Vm are non-zero. Given that Vm consists of measured values, we only know 

the element values within the resolution limits of the velocity sensor. Thus we can 

reasonably replace any zero element on the diagonal of WVm by some multiple of the 

119 



appropriate sensor resolution limit to ensure that WVm is always full rank (Ideally 

this multiple would be one, but a larger multiple may be required to avoid an ill 

conditioned WVm. The actual multiple is not important as long as resulting term 

is small, i.e. we are substituting a small weight for a zero weight). Thus we can 

guarantee that WVm is always positive definite and, therefore, that r is positive 

definite as well. 

The error metric r is dimensionally consistent and positive definite, i.e. it is only 

zero when all three force constraint equations for a model are exactly satisfied. Using 

Ti = Afc to eliminate Ti from r we get 

rPv   =   (^m-Afc)
rW^mWVm(^m-Afc) (6.20) 

To find the solution fc which minimizes r we set the derivative ^p- equal to zero and 

solve for fc. 

-£   =   -2ATW^WVm^m + 2ArW^WVmAfc = 0 (6.21) 
c 

t ATW
L WVm A]"1 ArW£mWvm^m (6.22) 

The solution vector fc is the set of contact reaction load parameters which, given 

the instantaneous measured data Tm and Vm, minimizes the violation of a given 

candidate contact model's force constraints. 

6.3    Permissible and Impermissible Components of 

the Measured Force 

In this section we decompose the measured force vector Jr
m into its permissible and 

impermissible components TP and JFJ for a given candidate contact model. We then 

verify that these components are, in fact, always orthogonal. 
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6.3.1 Computing Tp 

We can construct a 3 x 3 projection matrix YFp which directly extracts the permissible 

component of the measured contact forced Tm. The permissible component of Tm 

is 

TP   =   Afc (6-23) 

=   A[ATW^WVmA]_1ArW?;mWvm^ (6.24) 

=   \>TPTm (6-25) 

where P^ = A [ArW^WVmA]_1 ArWjmWVm. 

6.3.2 Computing Ti 

Similarly, we can construct another 3x3 matrix to directly extract the impermissible 

component of !Fm. 

J=:   =   Tm-J=P (6.26) 

=   {\-VTp)Tm (6.27) 

=   P^^m (6-28) 

6.3.3 Orthogonality of 7=P and Ti 

To verify that TP and Tj are orthogonal we must show that their dot product 

ffri   =   ^P^(I-P^)^ (6-29) 

is equal to zero for any Tm- This will be the case if and only if 

P% (I " P*>) = 0 (6-30) 
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Note that P^ is symmetric, i.e. it is the product of two symmetric matrices 

A [ArW£mWvmA]_1 AT and W£raWVm . Substituting P£p = P^, into 6.30 and 

expanding yields 

P^P(I-P^) (6.31) 

=   (A [ATW^WVmA]"1 ArW^mWVm) (i - A [AXWvmA]_1 ArW?mWVm) 

=   (A [ATWLWVmA]"1 ArW?mWVlB) - (A [ATW?mWVm A]"1 ArWjmWVm) 

=   0 

Thus jFp and !Fj are always orthogonal. 

6.4    Why the Technique Is Limited to Selecting the 

Best Candidate Model in Each Class 

As noted before, the measured velocity Vm exactly satisfies the velocity constraints 

of every candidate model we have constructed. In other words, the measured velocity 

provides no information regarding the relative consistency of the different candidate 

contact models. While Vm does appear as a weighting term in the consistency mea- 

sure, the same weights are applied to every model. Thus the consistency measure is 

a function of the violation of the force constraints alone. 

In the solution process we defined a model's impermissible force vector Tj to be 

the difference between the measured force vector Tm and the best approximation 

Tp of the measured force vector that could be constructed from vectors lying within 

the model's permissible force space, i.e. from the columns of the model's A matrix. 

In general, we expect a model having a permissible force space of dimension two 

(e.g. any Two Point Contact Model) to produce an inherently smaller impermissible 

force vector then a model having a permissible force space of dimension one (e.g. 

any One Point with Slip model).  In other words, describing an arbitrary measured 

122 



force vector :Fm requires three independent parameters; an approximation involving 

two independent parameters will always be as good or better than an approximation 

involving a single parameter. For this reason we can only use the consistency measure 

to pick the best model within a class, or more accurately, from among models which 

have permissible force spaces of the same dimension. In the following chapter we 

present a way to the pick best overall model regardless of the model class. 

6.5    Conclusion 

This chapter presented a technique to determine the best candidate contact model 

within a model class. We defined two criteria by which we judge candidate models: 

feasibility and consistency. The manner in which we constructed the candidate models 

guaranteed their kinematic feasibility. To determine their quasistatic feasibility we 

solved for the reaction loads required at each model's presumed contact points to 

produce the measured force/torque vector. To solve for these forces we introduced 

the concept of violation power, i.e. the power dissipation associated with violation 

of a model's constraint equation. By properly combining the violation power from 

each of a model's individual constraint equations we defined a single valued positive 

definite consistency measure which we used to identify the best feasible model within 

each model class. Finally, we articulated why the violation power based consistency 

measure cannot identify the best overall model. 
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Chapter 7 

Identifying the Best Overall Model 

In the previous chapter we introduced the concept of the violation power, i.e. the 

portion of total power dissipation which is physically impossible given the constraints 

of a particular candidate contact model. We used the violation power to construct 

a positive definite consistency measure whose value was zero if andonly if the mea- 

sured data exactly satisfied a model's constraint equations. We used this measure to 

assess each candidate model's consistency with the instantaneous measured force and 

velocity, Tm and Vm. Our initial expectation was that the model with the smallest 

measure would be the best candidate model. Instead, we found that this approach 

only identifies the best model within each class; the violation power based consistency 

measure cannot determine the best overall candidate contact model. 

This result stems from the fact that the instantaneous velocity Vm exactly satisfies 

the velocity constraint equations of every candidate contact model ( see Section 5.5) 

With V/ = 0 for every model, the violation power based consistency measure became 

a function of JF/ alone. In general, models having two independent reaction loads (e.g. 

Two Point Contact models) yield inherently smaller 3C
I than models having a single 

reaction load (e.g. One Point Contact with Slip models). Therefore the violation 

power based consistency measure only permits comparison of models which have the 

same number of independent reaction loads, i.e. models which have permissible force 
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spaces of the same dimension. 

In this chapter we resolve this problem by considering the vehicle's incremental 

motion vector AXm, formed by subtracting some previous vehicle position/orientation 

measurement from the current position/orientation measurement. As discussed in 

Section 5.6, AXm ( unlike Vm) does not inherently satisfy the motion constraints of 

each candidate contact model. Thus when we decompose AXm into its permissible 

and impermissible components, AXt will in general be nonzero and values of its el- 

ements will indicate the degree to which each model's motion constraint equations 

are violated by the differential motion vector AXm. The decomposition of AXm is 

largely analogous to the decomposition of Fm performed in the preceding chapter. 

7.1    Incremental Motion of a Model's Contact Points 

Given an incremental motion of the vehicle, AXm, we seek a solution vector of 

corresponding, unknown incremental tangential motions Axc of a model's presumed 

contact points such that 

AXi   =   A#m-BAxc (7.1) 

yields AXi = 0. 

7.1.1    Problems with a Direct Least Squares Solution for Axc 

When B is not square (i.e. for One Point Contact and Two Point Contact models) 

there will, in general, be no solution vector Axc which AXi = 0 for a given incre- 

mental motion AXm. Normally we would solve a problem of this type by selecting 

the solution vector Axc for which minimized the square of the length of the error 

vector AXj. As was the case with the decomposition of Tm, however, the length of 

AXi is undefined because the elements of AXj do not share the same units. The 
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square of the length of AXt is 

AAffAAT,   =   A^ + Ay? + A0? (7.2) 

(where Aar/, Ay/ and A0t are the components of AXj). i.e. AXjAXi is the sum 

of two terms which have units of length squared and one term which has units of 

angular displacement squared. When solving for the reaction loads fc we employed 

the concept of the violation power to construct a dimensionally consistent, physically 

justifiable error metric. To determiine the contact point tangential motions Axc we 

use the incremental equivalent of the violation power, the violation energy. 

7.1.2     Violation Energy 

The total work e done by the contact forces during the incremental motion AXm of 

the vehicle is approximately 

e   «   TT
mAXm (7.3) 

In section 5.6 we showed that given a particular candidate contact model and its 

associated force and motion constraint equations, we can write each Tm and AXm 

as the sum of a permissible and an impermissible component. Doing so, 7.3 becomes 

e   «   J^AXp + f^AXj+rfAXp + fjAXj (7.4) 

The first term is the permissible work, i.e. the portion of the total work which 

is consistent with the constraints associated with the presumed contact model. We 

define the violation energy to be the sum of the remaining terms i.e. 

ev   =   TlAXj+FjAXp + FjAXj 

=   TT
PAXI + FT

JAXm (7.5) 
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(7.6) 

The violation energy is the portion of the total work which is physically impossible 

given the constraints of the candidate contact model under consideration. Like the 

violation power, the violation energy will equal zero when the candidate contact model 

is perfectly consistent with the measured data vectors Tm and AATm, i.e. when both 

Ti and AXi are zero. 

7.1.3    Modified Least Squares Solution 

Using the concept of the violation energy, we can now construct a dimensionall con- 

sistent, physically justifiable error metric which will allow us to solve for the unkown 

contact point incremental motions Axc. Expanding 7.6 we find that 

ev   =   fXpAxI + fypAyI + mVopAeI (7.7) 

+fxj AxM + fyj AyM + mVoj A0M (7.8) 

As was the case with the violation power, an error metric formed by squaring the 

violation energy ev directly is only positive semi-definite due to the fact that the 

individual terms in the sum can cancel. We wish to select a model for which, ideally, 

each and every individual term in the sum equals zero. Thus our consistency measure 

should be zero only when this is true. A measure which satisfies this requirement is 

the sum of the squares of each of the terms in 7.8, which can be written as 

rev   =   (W^AAT/)
T(W^AA'/) + (W^AArm)T(W^AArm) (7.9) 

=   AATjW^W^AA-j + AAT^W^W^AA^ (7.10) 
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where W>p and W^ are diagonal weighting matrices formed from the elements of 

Tp and Ti respectively, i.e. 

W TP 

u Xp o 

w Ti 

0 

0      fyP 0 

0      0    mVOf 

/*,     0       0 

(7.11) 

0    /, yi 0 

0      0    mVoj 

(7.12) 

TP and T\ are the permissible and impermissible components of Tm we obtained 

in the previous chapter using the violation power based consistency measure, i.e. 

we obtain Tp and Ti from equations 6.25 and 6.28. By using these values we are 

assuming that the reaction loads at the contact points remain essentially constant 

during the course of the incremental motion AXm. For small incremental motions, 

this assumption should be reasonable. Using arguments similar to those presented in 

Section 6.2.3, we can guarantee the positive definiteness of matrices W£p"WVp and 

W£j "WV7; therefore rev is a positive definite error metric. 

Using AAfj = AXm - BAxc to eliminate AXj from r yields 

rev   =   (A*m-BAxc)
TW£pW^(A*m-BAxc) 

+A*£w£/W^AAfm 

(7.13) 

By using the the violation energy based metric we have tranformed the original least 

squares problem into a weighted least squares problem.   To find the solution Axc 

jj^Jf- equal to zero and solve for Axc. which minimizes r we set the derivative dr' 

dre 

dt 0 

=   -2BTW£pW^,AATm + 2BTW£pW^BAxc 
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Axc   =   [BTW^W^B]_1BTW^W^W^AATm (7.14) 

The solution vector Axc is the set of contact point motions which, given the current 

vehicle incremental motion vector AXm, minimizes the violation of a given candidate 

contact model's incremental motion constraints. 

7.2    Permissible and Impermissible Components of 

the Incremental Motion Vector 

In this section we decompose the incremental motion vector AXm into its permissible 

and impermissible components AXP and AXr for a given candidate contact model. 

This process is analagous to that used to decompose the measured force vector Tm. 

7.2.1    Computing AXp 

We can construct a 3x3 projection matrix PXp which directly extracts the permissible 

component of the measured contact forced AXm.   The permissible component of 

AXm is 

AXP   =   BAxc (7.15) 

=   B [BTW£pW^B]-1 BTW£pW^,AAfTO 

=   PXpAXm 

where VXp = B [BT
W^W^B]

_1
 BTW£pW^,. 
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7.2.2    Computing AATj 

Similarly, we can construct another 3x3 matrix P^, to directly extract the imper- 

missible component of AAfm, 

AATj   =   AXm-AXP (7.16) 

=   (I-P^)AATm (7.17) 

=   P*,AArm (7.18) 

where YXl = l-VXp. 

7.3    Conclusion 

This chapter introduced the concept of violation energy and used it to define a single 

valued positive definite consistency measure which we used to identify which of the 

best-of-class models from Chapter 6 was the best overall model. 
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Chapter 8 

Experimental Verification 

8.1 Introduction 

In this chapter we test the contact identification scheme developed in the preceding 

chapters. We show that the violation power based metric rPv is a good indicator of the 

best model within a model class. Using the same trials, we show that the violation 

energy based metric rev performs well in identifying which of the best-of-class models 

identified using rPv is the best overall model. We investigate the sensitivity of the 

technique to errors in the assumed value of the coefficient of friction, finding that poor 

estimates of /xrf lead to poor identification results. We conclude with an experimental 

investigation of the uniqueness of apparently equivalent models, showing that the 

models are in fact distinct. 

8.2 Experimental Apparatus 

The experiments presented in this chapter, like those presented in Chapter 4, were 

performed using the the Air Table Vehicle Simulator (ATVS) system shown in Figure 

8-1 (see Appendix A for a detailed description of the system design and its character- 

istics). Briefly, the system consists of a vehicle which, supported by three air bearings, 
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Figure 8-1: The Air Table Vehicle Simulator (ATVS) system consists of a 0.145 by 
0.290 meter, air bearing supported vehicle which moves freely over the surface of a 
one square meter glass topped table surface. Four miniature steel cables couple the 
motion of the vehicle to that of the four motors mounted to the corners of the table. 
In general, the position and orientation of the vehicle is controlled by coordinating 
the motion of the four motors. The position and orientation, as well as the linear and 
angular velocities, of the vehicle are determined from the motor shaft positions and 
angular velocities as measured by optical encoders mounted to the motor shafts. For 
all the experiments performed in this thesis, however, the vehicle was moved by hand 
i.e. the actuators were only used to maintain tension in the cables. This system is 
described in greater detail in Appendix A 
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moves freely over the surface of a one meter square glass topped table. Four miniature 

steel cables couple the motion of the vehicle to that of four brushless D.C. servomo- 

tors mounted to the table corners. Optical encoders measure the rotation angle and 

velocity of each motor, enabling the determination of the vehicle position/orientation 

and velocity with respect to the table. For the experiments in this chapter the vehicle 

was moved by hand, i.e. the motors were only used to maintain nominal tensions in 

the cables. The vehicle boundary is identical to that shown in Figure 4-2 A. 

For these tests, no filtering was performed on the vehicle velocity data, i.e. the 

ICR location and the znv point locations were computed directly from the raw vehicle 

world frame velocity vector. The vehicle world frame position and velocity vectors 

were computed from the motor shaft angles velocities as described in Appendix A 

8.3    Comments on Measuring the Accuracy of the 

Identification Technique 

Determining the accuracy of the technique requires that we know the actual contact 

points during each trial. In each trial the vehicle was moved by hand and brought 

into contact with fixed environmental objects having known location and geometry. 

The nominal contact points for each trial were determined visually by plotting the 

vehicle and obstacle geometries at each time point in a trial and noting apparent 

points of contact. This determination also considered the measured contact force at 

each time step to determine at what times contact transitions occurred. We treat 

these nominal contact points as the actual contact points for each trial. While not 

perfectly accurate, discrepancies should be small and thus the estimated accuracies 

should give a good indication of the technique's efficacy. 
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8.4    Using the Violation Power Based Consistency 

Measure rPv to Select the Best Model in a Class 

In Chapter 6 we showed that the violation power based consistency measure rPv can 

be used to identify the best candidate contact model within a model class. In this 

section we test this contention by examining data from four experimental trials for 

which we know the actual contact model. 

8.4.1    Case 1: One Point Contact with No Slip (Fixed Point 

Rotation) 

In this experiment, edge 5 of the vehicle was brought into contact with the corner of 

a rectangular aluminum bar and the vehicle was rotated about the corner such that 

little or no slip occurred at the contact point (see Figure 8-2). 

The upper portion of Figure 8-3 shows rPv for each of the eight possible One Point 

contact models (i.e. one for each segment in the vehicle boundary) while the lower 

portion shows which of these models yields the smallest value of rPv at each time 

point. Clearly, for this trial, rPv is an excellent indicator of the correct model within 

the One Point model class ( note that Figure 8-3 is a semilog plot; the rPv value for 

model 5 is typcally an orderof magnitude or more smaller than the next best model). 

The vehicle is initially at rest at t = 0 and the velocity goes through zero again at 

about t = 2.15 seconds. Very near these times the magnitude of the vehicle velocity is 

too small to yield reliable readings from the velocity sensors and the technique selects 

the incorrect model. At all other times, however, the minimum rPv model identifies 

the correct model. 

General note: When a candidate contact model is determined to be infeasible, we 

set its rPv and rSv values to their worst possible values, i.e. we compute the measures 

assuming that Fj = Tm, V/ = Vm , and AAf7 = AXm. This explains why the eight 

One Point Contact model curves plotted in the upper portion of Figure 8-3 appear 
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Figure 8-2: Case 1 Experiment: Edge 5 of the vehicle was brought into contact with 
corner cl of a fixed object in environment. The vehicle was then rotated about this 
corner such that little or no slip occurred at the contact point. Initial rotation was 
the counter clockwise direction, then the rotation was reversed , bringing the vehicle 
(approximately) back to its original position. The obstacle was a square bar of 6061 
aluminum alloy. 
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Figure 8-3: Case 1: Violation power based consistency measure rPv for the eight One 
Point Contact models (upper plot). Best (i.e. minimum rPv) One Point Contact 
Model(lower plot). 
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to be only three curves; most of the one point models are infeasible for this trial so 

they overlay each other, forming the uppermost curve in the plot. 

8.4.2    Case 2:   One Point Contact with Slip (Rotation and 

Translation) 

In this experiment vehicle edge 7 was brought into contact with a fixed cylindrical 

post (see Figure 8-4). The vehicle was then moved by hand such that both slip at 

and rotation about the contact point occurred. The direction of slip was such that 

the actual contact point approached arc 6 of the vehicle outline. 

The upper plot in Figure 8-5 shows the violation power for each of the eight 

possible one point contact models for the data set while the lower plot shows the 

number of the model having the smallest violation power at each point in time. We 

see that the One Point Contact with Slip model associated with edge 7 has the lowest 

violation power up until about time t = 1.75 seconds. Note that as the trial progresses 

the violation power associated with model 6 grows continually smaller, reflecting the 

fact that the actual contact point gets closer and closer to arc 6 throughout the trial. 

Eventually the violation power for model 6 becomes smaller than that for model 7, 

at which point model 6 is selected as the most likely model, as indicated in the lower 

of the two plots in Figure 8-5. 

During the trial, the actual contact point never quite reaches arc 6, i.e. the 

selection technique prematurely identifies arc 6 as the contacted boundary segment. 

If the actual contact point reached the intersection between edge 7 and arc 6 we would 

expect both models to be equivalent, i.e. both models would have the same contact 

point, the same normal and tangential vectors and therefore the same permissible force 

and velocity spaces; they would be the same model. Thus when the contact point is 

in the vicinity of the intersection point, we expect both models to be very similar and 

therefore to be difficult to distinguish from one another. Given that the measurements 

are not perfect and that the assumed coefficient of friction ( \xd = .25 for this trial) is 
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Figure 8-4: Case 2 Experiment: Edge 5 of the vehicle was brought into contact with 
a fixed cylindrical obstacle. The vehicle was then moved such that it was in sliding 
contact, where the vehicle motion combined both rotation and translation of the 
vehicle relative to the contact point. The obstacle was a 12.7 mm diameter stainless 
steel bar. 
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Figure 8-5: Case 2: Violation power based consistency measure rPv for the eight One 
Point Contact models (upper plot). Best (i.e. minimum rPv) One Point Contact 
Model (lower plot). 
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not exactly correct, the computed violation power for model 6 prematurely transitions 

to a value lower than that for model 7. Higher resolution measured data and better 

estimates of the actual coefficient of friction would lead to better results. Given that 

the properties of the two models are very similar in this region, however, we expect 

that using either model would yield adequate results in practice. 

8.4.3      Case 3: Two Point Contact (Pure Translation) 

In this trial edge 5 of the vehicle was brought into contact with a flat aluminum plate 

and the vehicle moved by hand such that vehicle underwent pure translation along 

the face of the plate (see Figure 8-6). The vehicle was initially moved in the positive 

(vehicle frame) y-direction, was brought to a stop at approximately time t — 2.6 

seconds, and was then moved in the negative y-direction, back towards its starting 

position. 

The upper portion of Figure 8-7 shows the violation power for the Two Point 

Contact models for this trial while the lower portion shows the two point model having 

the smallest violation power. The y-axis on the lower plot indicates the combination 

of boundary segments associated with each of the Two Point Contact models. For 

example, in the first half of the trial, the best model is the (5,6), i.e. the model in 

which contact occurs on edge 5 and arc 6. In the vicinity of the velocity reversal ( 

t « 2.6 seconds) the magnitude of the vehicle velocity is too small to yield reliable 

readings from the velocity sensors and the technique selects an incorrect model. Once 

the reversed velocity grows large enough, model (4,6) is identified as the best Two 

Point Contact model for most of the remainder of the trial. Note from the upper plot, 

however, that model (4,6) is nearly indistinguishable from model (5,6) in the first half 

of the trial and is nearly indistinguishable from model (4,5) in the latter half of the 

trial. This reflects the fact that, in these regions, the appropriate pair of models are 

equivalent. 
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Figure 8-6: Case 3 Pure Translation: Edge 5 of the vehicle was brought into full 
contact with a fiat wall.. This contact was maintained throughout the trial as the 
vehicle was translated first upward and then downward back to its approximate initial 
position. The wall was smooth, rectangular block of 6061 aluminum. 
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Figure 8-7: Case 3: Violation power based consistency measure rPv for the twentyeight 
Two Point Contact models (upper plot). Best (i.e. minimum rPv) Two Point Contact 
Model (lower plot). 
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8.4.4    Case 4: Two Point Contact ( Rotation and Translation) 

In this trial edges 3 and 5 of the vehicle were brought into contact with fixed cylindrical 

posts(see Figure 8-8). The vehicle was then rotated in the clockwise direction such 

that contact with both posts was maintained, with the actual contact eventually 

transitioning from (3,5) to (3,4). The upper portion of Figure 8-9 shows rPv for 

each of the possible two point models while the lower portion of the figure plots the 

number of the model which has the smallest value of rPv. The upper plot clearly 

identifies models (3,4) and (3,5) as the best models throughout the trial, but the 

similarity between their rPv values makes choice between these two models difficult. 

The lower plot, based on a direct comparison of the rPv values, reflects this difficulty 

in the numerous transitions between the two models. The similarity of the rPv values 

raises the question of whether these two models are fundamentally equivalent not. 

We consider this issue in greater detail in Section 8.8. 

8.5    Using the Violation Energy to Select the Best 

Best-of-Class Model 

In the previous section we showed that consistency measure rPv does a good job of 

identifying the actual contact model if we already know the correct model class. In 

general we do not know the model class, so we can only use rPv to identify the best 

model within each model class. In Chapter 7 we presented the violation energy based 

consistency measure re„ as a means by which to determine which of the best-of-class 

models is the best overall model. In this section we test this ability of this technique 

to select the best overall model from the best-of-class models associated with each of 

the data sets discussed in the previous section. 
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Figure 8-8: Case 4 Experiment: The vehicle was brought into contact with two fixed 
cylindrical obstacles and then rotated in a clockwise direction. Initially vehicle edges 
3 and 5 contacted the cylinders( we shall refer to this contact configuration as simply 
(3,5) ). As the vehicle rotates, the actual contact state eventually transitions from 
from (3,5) to (3,4). Both obstacles were 12.7 mm diameter stainless steel bars. 
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Figure 8-9: Case 4: Violation power based consistency measure rPv for the twentyeight 
Two Point Contact models (upper plot). Best (i.e. minimum rVv) Two Point Contact 
Model(lower plot). 
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8.5.1 Case 1: One Point Contact with No Slip (Fixed Point 

Rotation) 

The upper portion of Figure 8-10 shows re„ for the best One Point Contact and Two 

Point Contact models for the One Point Contact with No Slip data set. We see that 

the consistency measure for the best One Point Model is uniformly smaller than that 

for the best Two Point Model. The lower plot in Figure 8-10 shows the number of 

contact points associated with the best overall model (dots) in comparison to the 

number of contact points in the actual model (shaded region). For this trial the 

technique always selects a model with the right number of contact points. 

Figure 8-11 shows the specific model selected as a function of time. The y-axis 

shows all of the possible one and two point contact scenarios for the given vehicle 

shape. The eight One Point Contact scenarios are shown at the bottom where the 

numbers 1 through 8 signify the number of the vehicle boundary segment in con- 

tact with the environment. The twenty-eight possible two point contact scenarios are 

shown above the one point models. Each pairing of numbers (i, j) indicates a partic- 

ular two point contact scenario in which boundary segments i and j are in contact 

with the environment. The plot shows the best overall model selected for each time 

points (dots) in comparison to the actual contact scenario (shaded region). For this 

trial the technique is seen to select the correct model almost every time. 

8.5.2 Case 2:   One Point Contact with Slip (Rotation and 

Translation) 

The upper portion of Figure 8-12 shows rev for the best of the One Point Contact 

model and for the bestTwo Point Contact model while the lower portion indicates 

which of these best-of-class models has the smallest value of rev. We see that selecting 

the best-of-class model with the minimum re„ model typically identifies the correct 

number of contact points in the actual model but that there are regions where it 
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Case 1: Violation Energy Metric for Best One and Best Two Point Contact Models 
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Figure 8-10: Case 1: Violation energy measure re„ the best One Point Contact model 
and the best Two Point Contact model (upper plot). Number of contact points 
associated with the best overall model (lower plot). 
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Figure 8-11: Case 1: Best Overall Model vs. Time. 
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incorrectly selects a two point model over the correct one point model. Figure 8- 

13 shows the actual model selected as a function of time. The approach typically 

identifies the correct contact model (i.e. One Point Contact on edge 7 of the vehicle). 

8.5.3    Case 3: Two Point Contact ( Pure Translation) 

In this trial the vehicle's motion (theoretically) exactly satisfies the motion constraint 

equations of all the One Point and Two Point contact models associated with edge 

5 (i.e. One Point models (4), (5), (6) and Two Point models (4,5), (4,6) and (5,6) ). 

Under these conditions the ability to choose between models becomes entirely a func- 

tion of how well the various models' force constraints are satisfied. Therefore, using 

arguments analogous to those presented in section 6.4, we expect the violation en- 

ergy based technique to select, in general, Two Point contact models for the pure 

translation case. 

Referring to the lower portion of Figure 8-14, we do not see the expected preference 

for Two Point models, i.e. in the first half of the trial, the technique typically selects 

a One Point model. Referring to Figure 8-15, however, we see that the One Point 

model selected is almost always one of the models associated with edge 5 (i.e. models 

(4), (5) and (6) ). During the second half of the trial, the technique typically selects 

Two Point models and Figure 8-15 shows that the Two Point models selected are 

always one of the three associated with edge 5 ( i.e. models ( 4,5), (4,6) and (5,6) 

). Thus the technique, with few exceptions, selects reasonable models. The question 

remains as to why the expected preference for Two Point models is absent from the 

first half of the trial. The answer is twofold. 

Figure 8-16 shows the estimated coefficient of friction \xd for the trial. To compute 

this value we divided the measured force's tangential component by its normal com- 

ponent and took the absolute value (the near zero values at times t = 0 and t « 2.7 

correspond to times when the tangential component was zero, i.e. before the vehicle 

was moved and during reversal of the vehicle velocity, respectively). The value of fid 
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Figure 8-12: Case 2: Violation energy measure rev the best One Point Contact model 
and the best Two Point Contact model (upper plot). Number of contact points 
associated with the best overall model, (lower plot). 
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Figure 8-13: Case 2: Best Overall Model vs. Time. 
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used by the technique for Case 3 was pd = .2. Thus we see that the assumed value 

for /j,d was too high in the first half of the trial and was too low in the latter half. We 

believe this variation in the actual coefficient of friction is partly responsible for the 

absence of the expected preference for Two Point models for Case 3. 

A second contributing factor is the kinematics of the ATVS mechanism. We do 

not directly measure the vehicle's position and velocity; we compute them from mea- 

surements of the motor angles and velocities. Small errors in our knowledge of the 

pulley and cable diameters and the discrete nature of the encoder measurements lead 

to a computed vehicle trajectory which is not pure translation. Thus the "theoret- 

ically" exact satisfaction of the models' motion constraints does not occur, i.e. the 

computed vehicle trajectory includes some small amount of rotation. Rotation of the 

vehicle is permissible for One Point models but not for Two Point models. Thus, 

what we thought would be a bias towards Two Point models could actually be, if the 

kinematic measurement errors are large enough, a bias towards One Point models. 

We expect that more accurate measurement of the vehicle's actual motion would show 

the original expected preference for Two Point models in the pure translation case. 

8.5.4    Case 4: Two Point Contact ( Rotation and Translation) 

Figure 8-17 shows that the violation energy based metric does an excellent job of 

identifying this contact case as a two point contact case. Referring to Figure 8-18 

we see that after the initial transient at the beginning of the trial (where the vehicle 

accelerates from rest to a roughly constant angular velocity) the technique selects 

either the correct model or the immediately adjacent model (i.e. model (3,5) or model 

(3,4)) in almost every case. As we would expect from the apparent equivalency of the 

power violation occurs for these two models in Figure 8-9 the technique has difficulty 

deciding between these two models. We will show in Section 8.8 that these models 

are in fact distinct, implying that their apparent equivalency results from limitations 

on our ability to accurately measure the vehicle data. 
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Figure 8-14: Case 3: Violation energy measure rev the best One Point Contact model 
and the best Two Point Contact model (upper plot). Number of contact points 
associated with the best overall model, (lower plot). 
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Figure 8-15: Case 3: Best Overall Model vs. Time. 
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Cut 3; Estimated Dynamic Coefficient of Friction jid 
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Figure 8-16: Case 3: Estimated coefficient of dynamic friction /j,d during Case 3. /xd 

was estimated by dividing the contact force's tangential component by its normal 
component and taking the absolute value. At time t = 0 no tangential load is applied 
to the vehicle and its tangential velocity is still zero. At about time t = 2.7 seconds 
the vehicle velocity is reversed. The tangential force briefly goes to zero during the 
reversal, leading to a second dip in the estimated value of /xd. 
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Figure 8-17: Case 4: Violation energy measure r6v the best One Point Contact model 
and the best Two Point Contact model (upper plot). Number of contact points 
associated with the best overall model, (lower plot). 
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8.5.5    Case 5: Mixed Contact 

In this trial the vehicle undergoes several transitions in contact state as shown in 

Figure 8-19. The lower portion of Figure 8-20 shows the actual number of contact 

points (shaded region) and the number of contact points associated with the best 

overall model (dots). While not in perfect agreement, the vast majority of the selected 

models have the correct number of contact points. Referring to Figure 8-21 we see 

that the technique selects the correct model or an immediately adjacent model the 

majority ( 78%) of the time. For comparison, given that we have 38 possible contact 

models, we would expect a random selection process to yield a correct result only 2.6 

percent of the time. 

8.6    Hazards of Inequality Based Tests 

A potential weakness of the approach presented in this basis is its reliance on inequal- 

ity based tests to determine the feasibility of candidate models. Such tests are used 

at three points in the technique. We discuss each briefly in this section. 

8.6.1    Quasistatic Feasibility Test 

To determine a model's quasistatic feasibility we solve for the reaction loads at its 

presumed contact points and test to see if the normal components at each point are 

all less than zero. When the magnitude of a computed normal force is close to zero, 

small errors in the computed value can lead to the spurious exclusion or inclusion 

of the associated model from/into the set of feasible candidate contact models. This 

can lead to the selection of the wrong contact model. 
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Case 4: Best contact points versus time for mu = 0.25, f   =0 
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Figure 8-19: Case 5 Experiment: The vehicle was brought into contact with a set 
of four fixed cylindrical obstacles. The vehicle was moved such that the sequence of 
contact states depicted above took place. All four obstacles were 12.7 mm diameter 
stainless steel bars. 
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Caso 5: Violation Energy Metric for Best One and Best Two Point Contact Models 
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Figure 8-20: Case 5: Violation energy measure rCv the best One Point Contact model 
and the best Two Point Contact model (upper plot). Number of contact points 
associated with the best overall model, (lower plot). 
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Figure 8-21: Case 5: Best Overall Model vs. Time. 
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8.6.2 Direction of Friction Force Test 

To determine the direction of the friction force acting at each of a model's presumed 

contact points we determine the sign each contact point's computed tangential ve- 

locity. When the tangential velocity is close to zero, small errors in its computed 

value cause us to assign the wrong direction to the friction force which can have a 

dramatic effect on the model's computed reaction loads. This in turn can cause the 

correct model to be interpreted as infeasible or, conversely, to an infeasible model 

being interpreted as feasible. 

8.6.3 Candidate Contact Point Domain Test 

Similar problems arise in the identification of the candidate contact points. Recall 

that we find these points by computing the zero-normal-velocity (znv) point for each 

boundary segment on the vehicle. Regardless of the vehicle velocity, we can always 

find at least one such point for every boundary segment in the vehicle. The set of 

candidate contact points is the set of znv points which reside within the domain of 

their associated boundary segment's. When a znv point occurs close to the end point 

of a boundary segment, small errors in the znv point's computed location can once 

again lead to the spurious exclusion or inclusion of the boundary segment's associated 

candidate contact models. 

8.7    Sensitivity to Assumed Value of Dynamic Co- 

efficient of Friction 

A potential weakness of the identification method is the assumption that we know 

the dynamic coefficient of friction ßd. We will investigate the sensitivity using the one 

point with slip data set as the results for this case appear to be more sensitive than 

the other trials. We shall roughly gage the sensitivity of the technique to errors in 
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ßd No. Points. Best Model Best Model or Adj. Model 

0.00 18% 9% 17% 

0.05 14% 7% 12% 

0.15 23% 14% 20% 

0.20 56% 44% 52% 

0.25 78% 61% 68% 

0.30 71% 59% 67% 

0.35 59% 45% 53% 

Table 8.1: Percentage of time the technique selected 1) the correct number of contact 
points, 2) the best overall model and 3) the best overall model or an immediately 
adjacent model. 

Hd by comparing the percentage of the time the technique selects the correct number 

of contact points, 1) the correct number of contact points, 2) the best overall model 

and 3) the best overall model or an immediately adjacent model for different values 

of nd. These results are tabulated in Table 8.1. The actual coefficient of friction was 

independently estimated to be in the range 0.20 < \id < 0.25. 

These results imply that the technique is sensitive to errors in the assumed value 

of the coefficient of friction. The best results occur for 0.20 < nd < 0.30 which is in 

reasonably good agreement with the estimated value for nd~ 

8.8    Numerical Investigation of the Uniqueness of 

Apparently Equivalent Models 

In Section 8.4.2 we found a pair of Two Point Contact models that produced nearly 

identical values for the violation power based consistency measure rPv. This raises the 

question of whether the models are equivalent or not. Given the way we determine 

rPtl, the models could only be equivalent (i.e. could only produce identical rPv values) 

if and only if their permissible force spaces are identical (i.e. if the spaces span the 

same vector subspace) at every time point in the data set. 
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Case 4: Parallelism of Permissible Force Spaces for Models (3,4) and (3,5) 
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Figure 8-22: Violation power metric rPv for Case 4i.e. for 

For any Two Point Contact model, the permissible force space is a two dimen- 

sional subset (i.e. a plane) within the three dimensional space of possible measured 

force vectors. The permissible force spaces of two Two Point Contact models will be 

identical if they produce permissible force space/ planes which are parallel to each 

other. We can test for parallelism between the two planes by examining the scalar 

product of their respective unit normal vectors equals. Permissible force spaces which 

are parallel should produce a scalar product equal to plus or minus one while orthogo- 

nal spaces should produce a scalar product equal to zero. Thus if the two models from 

Section 8.4.2 are equivalent we expect them to consistently produce scalar products 

close to magnitude one. 

Figure 8-22 shows this scalar product for models (3,4) and (3,5) for the data 

set presented in Section 8.4.2. Intuitively we expect models (3,4) and (3,5) to be 

identical when the candidate contact points for arc 4 and edge 5 coincide, i.e. when 

one of the actual contact points coincides with the intersection point between arc 4 

and edge 5. This situation occurs at about t = 1.58 seconds in the trial and we see 
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from Figure 8-22 that this is indeed when the two models' permisible force spaces 

are most similar. For times to either side of t = 1.58 seconds we see that the force 

spaces become progressively more distinct. This is reflected in the lower portion of 

Figure 8-9. For times 0.75 > t < 1.20 seconds the technique most frequently selects 

the correct model (3,5). For times near the transition point (1.20 > t < 1.90) the 

technique selects both models with almost equal frquency. At the end of the trial, 

the technique almost exclusively selects the new correct model (3,4). ( We have 

ignored the results in the first 0.5 seconds of the trial because the vehicle experiences 

significant acceleration during this time as it starts from rest and is rapidly brought 

up to speed. Thus the quasistatic assumption does not hold in this region and the 

results produced by the technique are not necessairly reliable. By t « 0.5 seconds the 

startup transient is largely over). 

Since the models are distinct, we conclude that the difficulty in distinguishing 

between these two models is not due to the fundamental equivalence of the models but 

rather to the quality of our sensor data and our knowledge of the physical parameters 

of the system (i.e. the geometry of the vehicle boundary and, more importantly, the 

assumed value of the coefficient of friction pa). 

8.9    Conclusion 

This chapter presented experimental results which confirm the efficacy of the contact 

identification technique presented in the previous chapters. A variety of contact 

scenarios were investigated, including one point contact with no slip, one point contact 

with slip, two point contact with rotation and translation, two point contact with pure 

translation and mixed contact involving multiple transitions between single point 

contact, two point contact and no contact. In each case the technique selected either 

the correct model or a reasonable, representative model the majority of time. 
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Chapter 9 

Conclusions 

This thesis presented two tools to improve the robustness of manipulation systems 

to geometric uncertainty when operating in poorly characterized (i.e unstructured ) 

task environments. 

9.1    Part I: Misalignment Tolerant Grasping 

9.1.1    Summary 

Part I of this work concentrated on minimizing a manipulation system's sensitivity to 

positioning errors between the manipulator end effector and task objects. A simple, 

novel grasping system was presented, consisting of a gripper and a suite of compat- 

ible handles which passively self align relative to the gripper when grasped. Each 

handle imposes a different degree of alignment and also exhibits a different actuator- 

orthogonal force space, i.e. a vector space of applied loads whose support requires 

no actuator torque. Since its integration into the manipulation subsystem the Jason 

Remotely Operated Undersea Vehicle (operated by the Woods Hole Oceanographic 

Institution) the grasping system has been used extensively to perform a wide range 

of ocean science tasks at depths as great as 5000 meters. These tasks include tool 

based tasks (e.g.   sediment sampling, hydrothermal vent water sampling, mating 
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Ik 
Figure 9-1: Example of a gripper with variable geometry fingers dexterously manip- 
ulating a handle. 

and de-mating electrical connectors), tasks involving unstructured objects (e.g. sam- 

pling mussels and tube worms, acquiring rock samples) and a great many equipment 

transfer tasks (e.g. loading and unloading sampling devices, samples and sample 

containers). 

9.1.2    Future Work 

Dexterous Manipulation of Handles 

The geometry of a handle, in conjunction with that of the gripper fingers, determines 

the ultimate alignment of the handle when fully grapsed. By designing a gripper 

which has variable finger geometry, the position and orientation of a grasped handle 

could be varied continuously by commanding coordinated changes to the geometry of 

the different fingers (see Figure 9-1). This would represent a fundamentally new type 

of dexterous grasping. Typical dexterous grasping relies entirely on friction forces 

to constrain a grasped object and therefore is limited to tasks involving small ma- 

nipulation loads. Slip between the gripper and grasped object is vigorously avoided. 

Constraint of handles, even in the dexterous case, relies on geometric constraint and 

would therefore be capable of handling much higher manipulation loads. Slip in this 
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type of grasping is not only desirable, but required. As such, the handles and fingers 

should be designed to have as low a coefficient of friction as possible. 

Such a gripper/handle system would be an implementation of the macro-micro 

manipulator concept. Key issues would be manipulability of the handle, avoiding 

jamming and ensuring the ability to apply desired forces and torques to handles. The 

system could be implemented to actuate all or only a portion of a handle's degrees- 

of-freedom. 

9.2    Part II: Contact Identification 

9.2.1    Summary 

A technique to identify the contact state of a moving rigid planar body ( i.e. the 

vehicle) interacting with fixed planar bodies (i.e. the environment) was presented 

and experimentally verified. Given the vehicle's velocity and boundary geometry we 

solved for the set of kinematically feasible candidate contact points, from which we 

constructed the set of kinematically feasible candidate contact models. We derived 

each model's force and velocity constraint equations and showed that they define 

a model's permissible force and permissible velocity spaces. These vector spaces 

represent the set of possible measured vehicle force and velocity vectors which are 

physically possible given the constraints of the assumed model. 

Using each model's permissible force and velocity spaces we decomposed the actual 

measured force and velocity into permissible and impermissible components. The 

impermissible components represent the degree to which the current measured data 

violate a given model's constraint equations. From these components we computed 

the violation power, i.e. the power dissipation associated with violation of each of a 

model's constraint equations. By properly combining the individual violation power 

terms for each constraint equation we formed a positive definite consistency measure 

by which we assessed the degree of compatibility between each candidate model and 
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the current measured data vectors. 

The violation power based metric, however, only identified the best model within 

a model class. To identify which of the best-of-class models is the best overall model, 

we introduced a similar metric based on the violation energy, i.e the work associated 

with the violation of a models constraint equations during a given incremental motion 

of the vehicle. Finally, we demonstrated experimentally the efficacy of this two stage 

identification process. 

9.2.2    Future Work 

Applicability to the General Manipulation Problem 

While this work has been presented in the context of a vehicle interacting with its 

environment, the identification technique applies equally well to the problem of a 

manipulator end effector or grasped object being manipulated in an environment 

populated by fixed objects. Thus the technique can be applied to a wide range of 

compliant motion control problems. Example uses could include detecting contact 

transitions during automated assembly for disassembly tasks or enabling a manipu- 

lator to autonomously explore an unknown local environment. 

Improving Identification Accuracy 

While the technique performs well, the accuracy must be improved to ensure reliable 

performance of a complete manipulation system. 

The most straightforward path to improved performance is the use of better sen- 

sors. For the experiments presented, availability dictated the use of a force/torque 

sensor designed to measure loads 10 to 50 times larger than the typical loads en- 

countered in these experiments. In addition, more up-to-date force/torque sensors 

incorporate accelerometers to enable the subtraction of acceleration induced loads 

from the sensor signal.   Use of a properly scaled, acceleration compensated force 
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sensor could substantially improve the quality of the force and torque measurements. 

Likewise, the accuracy of the velocity measurement technique employed becomes 

quite poor near zero velocity. While zero crossing will ultimately be a problem re- 

gardless of sensor resolution, a more accurate velocity sensor would yield improved 

performance for a wider range of vehicle conditions. 

As mentioned earlier, no filtering of the force or velocity data was performed for 

any of the experiments presented in this thesis. Any introduction of filtering must be 

carefully considered due to the fact that the technique is based on the relationship 

between the instantaneous measured force and the instantaneous measured velocity. 

Thus, it is advisable that the two measurements should be filtered identically so that 

they have the same frequency content and lag. A better approach might be to employ 

smoothing techniques to a block of data centered, say, t seconds in the past to produce 

zero lag estimates of the force and velocity at this prior time. This approach presents 

the technique with higher quality estimates of the measured data but yields a contact 

model which was valid t seconds ago rather than the current model. It may also be 

possible to integrate the maximum likelihood approach presented by Eberman [9] into 

technique presented herein. 

Incorporation into a Closed Loop Hybrid Controller 

An obvious next step is to incorporate the contact identification system into the 

closed loop hybrid control of a vehicle or manipulator (see Figure 3-2) to perform a 

simple task. In the context of the vehicle control problem, this could be the problem of 

maintaining vehicle heading while braced against an unknown environment despite the 

presence of disturbance loads. Alternatively, the vehicle could be used to characterize 

the unknown environmental geometry by tracking the absolute positions of the actual 

contact points. 
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9.2.3    Use of the Technique with Concave Objects 

In this thesis we have considered the case of a convex vehicle throughout. None of 

the arguments presented require that the vehicle be convex. To find the candidate 

contact points we need to know the vehicle's boundary geometry and velocity, but 

the concavity or convexity of the vehicle is irrelevant to this portion of the contact 

identification technique. Once we have the candidate contact points, we can construct 

the candidate contact models, again, regardless of the convexity or concavity of the 

vehicle shape. To select between models we fit the measured force and velocity data 

to each candidate contact model's permissible force and permissible velocity spaces. 

Once again, there is no aspect of this fitting process that depends upon the vehicle's 

convexity. We conclude, therefore, that the contact identification technique presented 

applies equally well to concave shapes. 

Estimation of Dynamic Coefficient of Friction 

The performance of the contact identification technique depends on the accuracy of 

the assumed value of the coefficient of friction which, in general, will not be well 

known. The technique would benefit strongly from the incorporation of the ability to 

estimate the acting coefficient of friction. Ideally this would be a realtime procedure, 

but could also be obtained from characterization motions performed explicitly for this 

purpose. 

Incorporation into Higher Level Task Planning Systems 

The technique presented in this thesis simply identifies the contact characteristics of 

the moving vehicle. The problem of intelligently using this information in the control 

of the vehicle is not a trivial problem, particularly given the fact that the information 

can at times be incorrect. This area of reasearch presents many unsolved challenges. 
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Extension to 3-D Systems 

Fundamentally the technique seems extensible to the three-dimensional case. For 

example, given a three dimensional body's surface geometry and linear and angular 

velocities we can solve for the set of kinematically feasible candidate contact points. 

Similarly, we can use these points to construct the set of kinematically feasible con- 

tact models and their permissible force and velocity spaces. Given these spaces, we 

should still be able to decompose the measured velocity and force into permissible and 

impermissible components and, therefore, we should be able to compute the violation 

power and energy consistency metrics. 

The number of candidate contact models to be evaluated, however, is apt to be 

quite large. Given N candidate contact points, one could formulate 1 Unconstrained 

Model, N unique One Pont Contact Models, 2!(J^2), 
uni(lue Tw0 Point Contact Mod- 

els' 3!(jvU)! uniQue Three Point Contact Models, 4!(J^_4), unique Four Point Contact 

Models, 5,(j^_5), unique Five Point Contact Models, and 1 Fully Constrained Model. 

For example, N = 8 candidate contact points yields 38 posssible planar contact mod- 

els but yields 220 possible three dimensional contact models. For N = 10 the number 

of three dimensional models jumps to 639. The strong dependence on the number 

of candidate contact points implies that modeling of three dimensional objects is 

best done using continuous surfaces rather than faceted approximations. The former 

representation yields far fewer candidate points and therefore, far fewer associated 

candidate contact models requiring assessment. 

9.3    Conclusion 

This thesis presented two new tools which improve a manipulator's ability to cope 

with uncertainty in its position and orientation relative to objects in the environment. 

The first tool, a new grasping system consisting of a gripper and a suite of compatible 

handles which passively self align relative to the gripper when grasped, enables a 
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manipulator to successfully grasp tools despite significant pre-grasp misalignment 

(e.g. up to ±5cm in some directions) between the gripper and a handle. Since 

its integration into the Jason Remotely Operated Undersea Vehicle (operated by 

the Woods Hole Oceanographic Institution) the system has been used extensively to 

perform a wide variety of deep ocean science tasks. 

The second tool, a technique to identify the contact state of the moving planar 

rigid body interacting with fixed planar rigid bodies, can enable the use of existing 

compliant motion control strategies (e.g. Hybrid Control, Impedance Control) in en- 

vironments where little or nothing is known about the geometry of environmental 

objects. Use of this system can improve a vehicle based manipulator's ability to cope 

with geometric uncertainty in two ways. It can be used in the direct control of the 

manipulator as it interacts with the unknown environment and, if integrated to the 

control of the vehicle, can enable the vehicle to stabilize itself against manipulation 

reaction loads by bracing itself against the unknown environment. This thesis exper- 

imentally validated the efficacy of the contact identification technique. Future work 

includes the incorporation of this technique into the closed loop hybrid control of a 

manipulator or vehicle system. 
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Appendix A 

Experimental Apparatus 

This appendix describes the laboratory apparatus used to experimentally validate 

the proposed contact accommodation scheme. The issues driving the design of the 

system are discussed as are the system's physical characteristics, including dimen- 

sional scaling of the mechanism and the mechanism's kinematic, static and dynamic 

properties. 

A.l    Justification for building an experimental testbed 

The following paragraphs summarize possible platforms that could be used to test the 

contact identification scheme along with the rationale for their selection or rejection. 

Control a real underwater vehicle: Use of a real ROV system presents significant 

logistical problems including limited availability for experiments ( due to high demand 

for their services ), expense of operation ( due to the specialized facilities and per- 

sonnel required for their operation ) and the risk the experiments pose to the vehicle 

system. Little quantitative data exists for many important system parameters (e.g 

thruster bandwidth during thrust reversal ) while variation of better known physi- 

cal characteristics is impractical (e.g. effective mass, thruster mounting geometry ). 

Tests using a real ROV would limit conlusions to "it worked with this system" or "it 

164 



didn't work with this sytem" with little hope in either outcome of learning why. 

Control a simulated underwater vehicle: Accurately simulating the dynamics of 

rigid and/or compliant bodies in impact situations involving friction is a complex 

task which is still an active area of research. Most of the existing approaches greatly 

simplify or ignore the detailed dynamics which occur during impact events. Since 

such effects are likely to present the greatest challenge to successful closed loop control 

during contact, simulation alone cannot adequately validate the technique presented 

in this thesis. 

Control a dimensionally similar physical system: While time consuming to de- 

velop, this approach avoids the logistical and quantification problems associated with 

using a real system while ensuring the presence of impact related dynamic effects that 

would be ignored by or poorly modeled by a simulated vehicle. 

The remainder of this appendix discusses the design and characteristics of the 

dimensionally scaled apparatus constructed for the validation experiments described 

in Chapters 4 and 8. 

A.2    Form of the Apparatus 

We have many options when considering how to construct an experimental system. 

Table A.2 lists some of the more promising options for each of the four system func- 

tions listed, where we have underlined the options chosen for use in our system. 

A-l shows a schematic of the proposed system. Four stationery, brushless D.C. 

motors control the three planar D.O.F. of the model vehicle (x, y position and angular 

orientation) via mechanical cables connecting the motor pulleys to the a pulley on the 

vehicle (Applying arbitrary force / torque combinations to the model vehicle using 

three motors would require some cables to "push" on the vehicle. Adding a fourth 

motor guarantees that arbitrary force / torque combinations can be applied to the 

model vehicle using only "pulling" or tensile cable loads).   The vehicle boundary 
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Support Mechanism Actuation Position Sensing Force Sensing 
Buoyancy 

Air Bearing 
Water Bearing 
SCARAArm 

Sliding Bearing 

Propeller 
Air Jet 

Water Jet 
Motor/Cables 
SCARA Arm 
Planar Motor 

Acoustic 
Encoder Arm 

Encoder/Cables 

Instrumented Bumper 
Force/Torque Sensor 

Table A.l: Selected implementation options for the primary system functions. 

Scaling Electronics 
Forward Kinematics Inverse Kinematics 
Jacobian Inertia Variations 
Cable Tensioning Motor Friction 
Position Sensing Force Sensing 
Velocity Sensing Torque Ripple 
Air Bearing Design Motor Drivers 
Impact Behavior Controller 

Table A.2: Issues involved in the design of the experimental apparatus 

plate (the part of the model vehicle which makes contact with the environment) is 

connected to the vehicle pulley via a 6 axis force torque, enabling the measurement of 

forces and moments resulting from contact with the environment. Three air bearing 

pads support the model vehicle, enabling it to move freely on the table surface with 

the static friction in the system coming from the bearing friction associated with 

the brushless motors. Since the drive mechanism is essentially a direct drive (i.e. 

there is no reduction between the motor and its pulley and the motor and vehicle 

pulleys are the same diameter) the contribution of the motors and motor pulleys to 

the total vehicle inertia can be made quite small, producing a system which closely 

approximates the inertia characteristics of the real vehicle. We shall discuss the design 

particulars in greater detail later in this chapter. 
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Figure A-l: Planar vehicle testbed 
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A.3    Scaling 

Our experiments are of no use unless 1) the conditions we subject the model vehicle 

to correspond in a known way to those we expect the full size vehicle to encounter and 

2) the response of the model vehicle to these model conditions corresponds in a known 

way to response the full sized vehicle would have if subjected to the corresponding 

"full size" conditions. The appropriate way to determine these relationships is through 

dimensional analysis. In this approach we transform a system's governing equations, 

which relate dimensioned, physical paramters (e.g. length, mass and velocity of a 

vehicle) into a dimensionless or unit-less form which involves only dimensionless ratios 

of these physical parameters. In this form, the governing equations for two different 

physical systems will be identical if these dimensionless ratios are the same for both 

systems. It is from these dimensionless ratios that we determine how to size our 

experimental system and its associated conditions to accurately model the behaviour 

of a full sized vehicle. 

A.3.1    Dimensional Analysis 

The first step in dimensional analysis is to determine a complete and independent set 

of quantities on which the dependent variables in the governing equations depend. 

For our situation ( a planar vehicle) the gsfoverning equations for any possible contact 

configuration are the three equilibrium equations obtained by setting the sums of the 

x and y forces (including D'Alembert forces) and the z moments acting on the vehicle 

to zero (where x, y and z form a right handed axis system whose x and y axes lie in 

the plane in which the vehicle moves). Generically, these equations are of the form 

Fx   =   Fx(m,di,...,di,<l>1,...,<f>m,xix,x,a,ä,äFNl,...,FNn,ii1,..., ßn) 

Fy   =   Fy(m,di,...,dl,<ßu...,(j)m,y,y,y\a,ä,ä,FNl,...,FNn,iJ,i,...,/j,n)      (A.l) 
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rz   =   r (J,m, di,.. •, di, </>i, • • •, 0m, ar, i, x, y, y, y, a, a, aF^,..., FNn,in, ■ ■ ■, Pn) 

where m is the vehicle mass, (du...,di) and (<£i,...,<£m) are defining linear and 

angular geometric values , (a:, x, x) and (y, y, y) are the position, velocity and accel- 

eration of the vehicle center of mass, (a, ä, a) are the angular orientation, rate and 

acceleration of the vehicle about the z axis, (FNl,. ..,FNn) are the contact normal 

forces acting on the vehicle and (/ii,..., fJ,n) are the coefficients of friction associated 

with these contacts. Referring to the equations of motion derived in the simulation 

section for the various planar contact configurations we see that this set is complete 

and independent (Note, however, that for a given contact case the contribution of 

many of these terms is zero, e.g. a vehicle constrained in the x direction will have 

zero contribution from terms involving x and x). 

Following this, we consider the dimensions of the dependent and independent 

quantities involved in the governing equations. These are 

[F*\    = 

[Fy]      - 

[rz]    - 

[J]    =    ML2 \a\    =    h (A-2) 

H    = 
[di],...,M    = 

[<t>\] , • • • , [4>m]      -- 

ML 
T2 [x] = L 
ML 
T2 [x] = L 

T 

ML2 

T2 [x] = L 
T2 

ML2 [a] = 1 
T 

M [a] = 1 
T2 

L [FN! , ■ ■ -,FNn] = ML 
T2 

1 [/*!>• ■ ■ , ßn] = 1 

where the notation a [ß] means "the dimension of ß" and M, L and T denote the 

fundamental dimensions of mass, length and time respectively. 

From the independent variables we select a complete, dimensionally independent 

subset of variables. This is a subset of the variables which can be combined in terms 

of products and powers to produce terms which are dimensionally equivalent to the 
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remaining members of the original set but which cannot be so combined as to produce 

terms which are dimensionally equivalent to each other. For our analysis we select 

the vehicle mass m, the geometric length di which we shall define as the length of 

the vehicle and the vehicle angular rate ä as our dimnesionally independent subset of 

variables. Using these we may define the following dimensionless forms of the original 

terms, where the notation ß* denotes the dimensionless form of ß. 

*2 = Fx 
md\ä2 

F* x y — md\6.2 

T* = T 

md'fä2 

J* = J 
md? 

m* = 1 

d* = 

<t>t = 4>i 

X* — X 

X* = X 

d\ä 

X* — did2 

y* = JL 
di 

y* ■= 
JL. 
d\ä 

y* = V 
d\ä2 

a* = a 

Ö* = 1 

ÖL* = ä 
ä2 

?k = 
FNi 

mdyä2 

ß* = V 

(A.3) 

Thus to ensure that our model vehicle accurately mimics the full size vehicle we 

must scale our model such that these dimensionless ratios have the same value for 

both systems, i.e. that 

ßmodel = Preal (A-4) 

where ß is the dimensionless ratio in question. Our selection of the dimensionally 

independent subset guarantees that m* and ä* are equal for all systems. Requiring 

that dl be the same for both systems is most easily satisfied by uniformly scaling the 

geometry of the real vehicle/environment by a constant factor to obtain the model 
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system geometry. To see this we equate a given d* for the two cases, obtaining 

d*i   „, =   d*i   , ''model 'real 

"•{model  \ _       |   "»reat 

^imodel/ \"lreai. 

di   , } \ rfi 
= Ki 

lreal   / \      *real   / 

constant (A.5) 

A similar analysis reveals the same scale factor relates the x and y cordinates of 

the vehicle center of mass for the two systems. Strictly speaking, we only need to 

use this scale factor for those dimensions which actually show up in the equations 

of motion. Since any geometric dimension of the vehicle's planar boundary can be 

involved in the dynamics of some contact configuration, we should scale all of the 

vehicle dimensions by this same factor. 

A consequence of uniformaly scaling the linear geometry of the vehicle is that all 

angles in the model system will be the same as the corresponding angles in the real 

system. Thus uniformly scaling the vehicle and environmental geometry ensures that 

a* and the (f>* will also be equal for the two systems. 

Applying equation A.4 to the dimensionless linear velocities x* and y* we find 

that 

Xmodel    Vmodel            "'Imodel arnodel     K K•  = K (A 6) 

ireal Vreal ^real     areal 

i.e. the velocity scale factor Kv is the product of the scale factors for length and 

angular velocity Kt and Kä. We are free to pick any value we wish for the ratio 

Kä-We will discuss this choice in more detail momentarily. 

Applying equation A.4 to the dimensionless linear and angular accelerations x*, 

y* and ä* we find that 
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%model        Vmodel Tyr T^2    rs / \  *-r\ — --   KiK^ — Ka (A.7) 
%real Vreal 

Qmodel 
K\ = K& (A.8) 

Otreal 

Similarly we find that the scale factors for the remaining quantities are 

^rnodel_  _   Fymodel   _   FNmodel   = #^#2 = ^ ^ ^ 

•^real if Teal JVea( 

^^ = KmK?Kl = KT (A.10) 
Zreal 

Jmodel 

J, real 
= KmKf = Kj (A.ll) 

where Km = mTTiPdd. 

Thus we see that by specifying just three of the scale factors (i.e. Kt, Km and 

Ka) we specify the scale factors for all of the desired quantities. We are free to select 

these three scale factors as we please as we design our model system. Before we do 

this, however, lets consider the scale factor for KQ. more closely. 

As noted above, a consequence of uniform scaling of the geometry between the 

systems is that all corresponding angles in the two systems are equal. Given this, a 

non-unity value for K& (the ratio between the two system's angular velocities) implies 

a non-unity scale factor for time between the two systems, e.g. a motion of the model 

vehicle which takes two seconds would represent a geometrically similar motion of 

the real vehicle that would take, say, 20 seconds. Thus, in selecting K& we are really 

selecting the inverse of scale factor relating the dimension of time in each of systems, 

i.e. Kt = ^f^ = -jf-r ■ Substituting for K& we summarize the relationships for the 

scale factors in Table xxx. 
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Scale Factor Value Scale Factor Value 

Ki unconstrained K& 
l 

*7 
Km unconstrained Kj KmKf 

Kt unconstrained Kf 
K-mKl 

Kf 

Kv 
EL 
Kt 

KT 
KmKl 

Ka # 
K, 1 

Ka 1 Kä 
1 

Kt 

K& l 
Kf Kk Km 

~*1 

A.3.2    Parameter values for the Jason ROV 

To employ the scaling laws we need to know the pertainant characteristics of the real 

vehicle. Table xxx summaraizes these characteristics for the Jason ROV operated by 

the Deep Submergence Lab of the Woods Hole Oceanographic Institution. 

Vehicle Property 

length 

mass 

Maximum Thrust, x direction 

Maximum Thrust, y direction 

Maximum Thrust-Generated Torque 

Value 

2.14 m (84 in.) 

1140 Kg (2500 lbm) 

445 N (100 lbf) 

445 N (100 lbf) 

271 N-m (200 ft-lbf) 

If we select KF = 10, Km = 500, and Kt = 10 we find that the remaining scale 

factors must be Kt = y/bÖÖ and KT = 100. 

A.4    Kinematics 

A.4.1    Geometry of an open circuit cable drive 

The proposed mechanism consists of for open circuit cable drives which share a com- 

mon output pulley. Therefore, to simplify the following kinematic derivations we first 

analvze the kinematics of an independent open circuit cable drive. 
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Figure A-2: Geometry of a cable connecting two pulleys of the same radius 

We restrict our scope in this section to open circuit cable drives whose pulleys 

are both the same radius and whose cable runs from one pulley to the other without 

crossing a line drawn between the pulley axes, as shown in A-2. Such open circuit 

drives have a unique geometric property which permits the derivation of closed form 

solutions for the most of the results derived in this chapter. This property is that 

the length of the tangent portion of the cable always equals the distance between 

the pulley axes independent of distance d separating the pulley axes (see A-2). In 

addition, the angle of the cable always equals the angle <f) of the line connecting 

the pulley axes. This is not true for drives whose pulleys have different radii, and 

using such open circuit drives to construct our mechanism would require the use of 

numerical methods to evaluate the forward kinematics and Jacobian. 

Figure A-2 shows two identical, rigid body pulleys linked by a laterally flexible 

but axially inextensible cable whose ends are rigidly affixed to the pulleys. Given the 

rigidity of all the elements the total length of the cable s remains constant regardless 

of the relative positioning and rotation of the pulleys. Computing the total length s 

when both pulley rotation angles aa and ab are equal to zero we get (assuming that 
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the loads acting on the system are such that the cable never goes slack) 

s   =   ßaoR + do + ßboR (A.12) 

where ßaoR and ßboR are the initial amounts of cable wrapped on pulleys a and b and 

d0 is the initial separation between the pulley axes. When aa and ab are non-zero we 

obtain 

s   =   (ßao-aa)R + d+(ßbo + ab)R (A.13) 

Equating  A.12 and  A.13 and solving for the current separation d as a function 

of the pulley rotation angles yields 

d   =   {aa-ab)R + do (A.14) 

For a system in which the cable runs over, instead of under, the pulleys the 

equation for d is 

d   =   -(aa-ab)R + d0 (A.15) 

A.4.2    Inverse Kinematics 

Using the results from the previous section we can model the geometry of the testbed. 

Referring to Figure A-3 we apply equation A.14 to model cables 1 and 3 and equa- 

tion A.14 to model cables 2 and 4 we get 
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Figure A-3: Schematic of model vehicle cable drive mechanism 

d\ = (cm — a5) R + dOi 

d2 = - (a2 - a5) R + d02 

dz = (a3 - a5) R + rf03 

d4 = — (a4 — Q;5) i? + C/O4 

(A.16) 

(A.17) 

(A.18) 

(A.19) 

From basic geometry we also have 

d\ = (X5 - -xif + {yb- -»)' 

d\ = (x5- - X2)2 + (y5 - -2/2) 

d\   = (x5 - - x3)
2 + (y5 - -ys) 

d\   = (X5 - - Xif + (y5 - -y*) 

(A.20) 

(A.21) 

(A.22) 

(A.23) 

Solving the inverse kinematics problem for the table mechanism requires that 
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we determine what motor angles «i through a4 are required to place the vehicle 

at a given [x5,y5,a5] . For serial link mechanisms (e.g. most robot arms) solving 

the inverse kinematics problem typically proves to be quite difficultwhile solving the 

forward kinematics problem (i.e. knowing the motor angles, determine the position 

and orientation of the end effector) presents little challenge. In contrast, solving the 

inverse kinematics problem for the testbed (which is a parallel link mechanism) is 

actually easier to solve than the forward kinematics. 

Given [x5,yb,a5] we use   A.20 through   A.23 to solve for the dt and substitute 

into A.16 through A.19 to get 

(A.24) 

(A.25) 

(A.26) 

(A.27) 

Oil     = 
dx - rfOx 

«2     = 
d2-d02  , 

=       R2     
+a> 

a3   - 
d3-d03 , 

=       Rs     +a5 

OL\     - 
di — dC>4 

=      „ hos 

where 

Ri = (Rigging)^, i = 1,..., 4 (A.28) 

where (Rigging)i is +1 if cable i gets tighter when pulley i is rotated the positive 

(i.e. CCW) direction and is -1 if such a rotation makes cable i go slack. 

A.4.3    Forward Kinematics 

The forward kinematics are somewhat more difficult to obtain. We begin by sub- 

stituting A.16 through A.19 into equations A.20 through A.23 and expanding to 

get 
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x\ - 2x5X! + xj + y2- 2y5y1 + y2 = R2(ai - a5)
2 + 2{ax - a^R^Ox + dÖ* (A.29) 

xl - 2x5x2 +x2
2 + y2- 2y5y2 + y2

2 = R2{a2 - abf + 2(a2 - a5)R2d02 + dO2 (A.30) 

x2 - 2x5X3 + xl + y\ - 22/52/3 + v\ = R2{a3 - a5)
2 + 2(a3 - a5)R3d03 + dO2 (A.31) 

x\ - 2x5x4 + x\ + y\ - 2y5y4 + y2 = R2(a4 - a5)
2 + 2(a4 - a5)RidOA + dOJ (A.32) 

Subtracting A.29 from A.30 yields 

2(xi - x2)x5 + 2{yi - y2)y5 + x2
2-x\ + y2- y\ = (A.33) 

R2{2(a1 - a2)o;5 + a\ - a\) + 2(c*2 - a5)R2d02 - 2(otl - a5)ÄidOi + dO2 - dO? 

Likewise, subtracting A.31 from  A.30 yields 

2(x3 - x2)x5 + 2(y3 - y2)yb + x\ - x\ + y\ - y\ = (A.34) 

Ä2(2(a3 - o;2)a5 + a$- a2) + 2(a2 - a5)R2d02 - 2(a3 - a5)R3d03 + dO2 - dO2 

We may rewrite these as 

C1X5 + c2y5 + c3a5 = c4 (A.35) 

C5X5 + c6y5 + c7a;5 = c8 (A.36) 

where 

cj = 2(x:-x2) (A.37) 

c2 = 2(y1-y2) (A.38) 

c3 = 2R2(a2-a1) + 2R2d02-2R1d01 (A.39) 

cA = x2-xl + y2-y2 + R2(a2-a2) 
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+2a2R2d02 - 2a1Rld01 + d02
2 - dOJ (A.40) 

c5   =   2{xz-x2) (A.41) 

c6   =   2(jte-ife) (A.42) 

c7   =   2Ä2(a2-a3) + 2/22^02-2^3^03 (A.43) 

c8   =   zf - x\ + vl - y\ + R\a\ - of) 

+2a2fi2rf02 - 2a3#3d03 + d02
2 - dOJ {AM) 

(A.45) 

Solving A.35 and A.36 for x$ and y5 in terms of a5 yields 

x5   =   kl(xb + k2 (A.46) 

y5   =   fc3a5 + A:4 (A.47) 

where 

C6 

c 

Substituting for rr5 and y5 in A.30 we get 

=   c6c3 - c2c7 (A48) 

C5C2 - C6C! 

k2   =   C&C2 ~ Ce°4 (A.49) 
C5C2 - C6Ci 

fc3   =   -Csfcl + C7 (A.50) 

=     C8JZC5^2 (A>51) 

yia2 + ßa5 + C = 0 (A.52) 
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where 

A   =   k2 + k2-R2 (A.53) 

B   =   2{k2 - x2)kx + 2(k4 - y2)kz + 2a2R
2 + 2R2d02 (A.54) 

C   =   x\ + y\ + k\ + k\ - 2k2x2 - 2k4y2 - a2
2R

2 - 2a2R2d02 - d02
2   (A.55) 

Solving for a5 we obtain 

-B ± y/B2 - AAC /4     x 
«5   =    ^  (A.56) 

To complete the forward kinematics solution we substitute a5 into A.46 and A.47 

to obtain x5 and y5. 

A.4.4    The Jacobian 

The Jacobian for the system relates the vector of vehicle velocities to the vector of 

motor velocities, i.e. 

[x5,y5,ä5]T   =   J[äi,ä2,d;3]T (A.57) 

To find £5, yb and a5 we differentiate  A.46,   A.47 and  A.56, respectively, with 

respect to time. Doing so we obtain 

x5   =   a5ki + kiä5 + k2 (A.58) 

?/5   =   a5k3 + k3a5 + k4 (A.59) 

a5   -    2Ä 2Ä* A 

_r>   1    BB-2CÄ-2AC : 

-    ^^    -a£ (A.60) 
2A °A 
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Differentiating A.53 through A.55 yields the unknown Ä, B and C 

Ä   =   2{k1k + hk) (A.61) 

B   =   2{k1k2 + k2k1) + 2{hh + hk) + 2R2Ü2 (A.62) 

C   =   2(k2k2 + kAki)-2x2k2-2y2k4-2R2a2Ü2-2R2d02ä2       (A.63) 

where, by differentiating A.48 through A.51 we have 

• =   c,c3 - c2c7 (A64) 

C5C2 - C6Ci 

• 2   =   c2c8 - c6c, (A65) 

C5C2 - C6Ci 

c7 — c5ki 

c6 

c6 

(A.66) 

L   =   ^^ (A.67) 

Finally, we determine the unkown Q by differentiating A.37 through A.44 which 

yields 

ex = 0 (A.68) 

c2 = 0 (A.69) 

es = 2*Ä2(ä2-ä!) (A.70) 

c4 = 2 * #2(a2d2 - aiÄi) + 2R2d02ä2 - 2R1d01ä1 (A.71) 

c5 = 0 (A.72) 

4 = 0 (A.73) 

cV = 2*fi2(ä2-a3) (A-74) 
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c8   =   2*R2(a>2Ü2 - 030:3) + 2R2d02ä2 - 2R3d03ä3 (A.75) 

(A.76) 

A.5    Statics 

A.5.1    Ensuring Positive Cable Tensions 

Cables cannot transmit compressive loads. We must ensure that the cables are always 

in tension. To do this we use four actuators to control the vehicle's three degrees of 

freedom. The presence of the fourth actuator allows gives us some control over the 

internal tension of the system. The approach we use is that used by Salisbury to 

ensure positive tensioning of the four actuator cables used to controleach three degree 

of freedom finger in the JPL/Stanford cable driven hand. 

The matrix relating the motor torques to the force/moment vector applied to the 

vehicle is a 3 by 4 matrix of rank 3. The null space of this matrix is a vector of motor 

torques which result in zero net force/moment applied to the vehicle. To guarantee 

positive tensions we use the three by three Jacobian derived above to determine three 

of the motor torques. We use the smallest (i.e. most negative) of these torques to 

determine what multiple of the null space vector must be added to the motor torque 

vector to ensure that the cable tensions are positive. 

/   = 

J-1    =   ^ 

J-TT 

COS0! — COS 02 COS 03 — COS 04 
1 
R 

sin^i — sin 02 sin 03 — sin 04 

R R R R 

(A.77) 

(A.78) 
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Null Space of J -T 

a\ «2 «3 CL4 

h h h h 
1 1 1 1 

(A.79) 

(A.80) 

J-T£   =   0 (A.81) 

E, = 1 

E2 = 
K3 

-K2 

-K4 

E3 = K, + E2K4 

E4 = -I + 2E2 

(A.82) 

(A.83) 

(A.84) 

(A.85) 

where 

K2 

K3 

K4 

h - b4 

a,\b4 — a4b\ 

a4bz — a3b4 

a2b4 — a4b2 

0463 - azb4 

b2 - b4 

(A.86) 

(A.87) 

(A.88) 

(A.89) 

A.6    Transmission Non-idealities 

The derivations in the kinematics, statics, and dynamics sections assume that the 

transmission (i.e.   the components connecting the actuators to the surrogate vehi- 
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cle) undergo no deformation when subjected to transmitted loads. In this section 

we model the deformation characteristics of the transmission in order to ensure the 

validity of this approximation. 

A.6.1    Stiffness of Open Circuit Cable Drive 

As discussed in the kinematics section, our mechanism consists of four open circuit 

cable drives connected in parallel to the surrogate vehicle. Thus we begin our analysis 

by considering the load/deformation characteristics of a single open circuit drive. 

Using this result, we can construct a stiffness model for the aggregate system. 

Consider the uniformly pretensioned system shown in figure ?? ( by uniformly 

pretensioned we mean that the cable has been wrapped such that its tension is initially 

everywhere equal to some value (note to me: this figure should have the cable running 

tangent from the BOTTOM of the left hand pulley (pulley 1) to the BOTTOM of 

the right hand pulley ( pulley 2)) 

M 
T   =   F+— (A.90) 

r2 

To find the total increase in length of the cable we sum the elongations of the cable 

in the tangent length and the cable wrapped on each pulley. The load/deformation 

characteristics of this system was studied in detail in [27] and the total cable elonga- 

tion was shown to be 

r2 

EAH eff 

(OT +!>(£_!) .^r- 
(A.91) 

where E is the cable material's modulus of elasticity, A is the cable's effective cross 

sectional area, and GF and fj,*eff the geometry friction number and the effective coef- 

ficient of friction respectively, defined as 
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GF   =   L^ff (A.92) 

£tf   =   f- + ^-)_1sign(^-l) (A.93) 

where L is the length of the tangent portion of the cable and fj,n and /ir2 are the 

coefficients of dynamic friction between the cable and pulleys 1 and 2 respectively. For 

our system n = r2 = R which means that L = d and, assuming that fin = fj,r2 = fx, 

also yields ß*eff = fsign (J - l). 

To find the stiffness we take the derivative of 8 with respect to T to get ^ and 

then invert this to get k = ^, yielding 

*   =       / EAKff T A <A-94) R(GF + l-lf) 

Unfortunately the cable has a nonlinear stiffness which, as shown in [27], depends 

inversely on the tension in the tangent length of cable. However, we can identify two 

assymptotic stiffness values: 

A;T«To   =   0 (A.95) 

*™ = w%i (A'96) 

Presuming successful implementation of the technique described in the statics 

section, the cable tensions will never drop below some minimum value which we can 

substitute for T0. Thus using A.96 provides a conservative estimate for the cable 

stiffness and greatly simplifies further analysis by enabling us to model the cable as 

a linear spring element. 
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A.6.2    Resonant Frequencies 

Having a model for the cable deformation allows us to model the load/deformation 

behavior of complete system. Assuming that the only significant compliance is that 

contributed by the cables, the mechanism has 7 degrees of freedom (D.O.F.): one 

rotational D.O.F. for each motor pulley and two translational and one rotational 

D.O.F. for the surrogate vehicle. 

Equilibrium equations 

In the absence of any externally applied loads the dynamic equilibrium equations for 

the mechanism are 

Jidi   =   FXR (A.97) 

J2d2   =   -F2R (A.98) 

J3Ö3   =   FsR (A.99) 

J4ä4   =   -F4R (A.100) 

J5o75   =   (-F1+F2-FZ + F4)R (A.101) 

m5xb   =   -^Fjcos^j (A.102) 

^52/5   =   -$3F<sin& (A.103) 

Constitutive equations 

The constitutive equations relate the deformations of the cables to the forces expe- 

rienced by the cables. To find these we apply A.96 to each of the cables which 

vields 

Fi   =   kiAst (A.104) 
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where i = 1... 4, As* is the increase in length of cable i and 

EA (A.105) 
R 

Geometry of deformation 

To make use of the constitutive equations A. 104 we need to solve for the As,. Assume 

that the system is initially at a known configuration (x5o, y5o, a5o) and (OJ1O, a2o, a3o, a4o). 

For this configuration we have 

di0 = \A*5o - xio? + (y5o - y*-o)2 (A-106) 

0io   =   arctanfy5o~M (A.107) 

where i = 1... 4 and (a;*, y^) are the x and y coordinates of the motor pulley axes. 

Geometrically, the length Si of cable i at any given time equals the total path from 

its attachment point on motor pulley i to attachment point of its other end on the 

the surrogate vehicle pulley (pulley 5), i.e. 

Si   =   ßuR + di + ßxR (A.108) 

where ßüR is the length of cable i presently wrapped on pulley i and ßi5R is the 

length of cable i wrapped on pulley 5. Recognizing that the rotation angle a* of 

pulley i increases or decreases the amount of wrapped cable on the pulley we can 

rewrite A.108 for each of the cables, yielding 

si   =   (/V-ai)Ä + di + (Ä5o + a5)Ä 
(A-109) 
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52 =   (p22o+ai)R + d2 + (p25o-a6)R (A.110) 

53 =     (ß33o-C*3)R + d3 + (ß35o+a5)R (A.lll) 

s4   =   {ßu0 + a±)R + d4 + (ß45o-a5)R (A.112) 

To solve for the change in length As, of cable i we subtract the initial value of 

sio from the present length s^. The nonlinear dependence of the d{ terms on the sur- 

rogate vehicle coordinates (#5,2/5) yields, when substituted back into the equilibrium 

equations, governing equations which have no closed form solution. 

To avoid this problem we can restrict our analysis to small motions of the surrogate 

vehicle about its initial position (rr5,y5). Doing so, we may approximate the ASJ by 

linearizing the Sj about a given (x5,y5). The result is 

Asi   =   Si-sio (A.113) 

«   ^^iAx + ^^Ay±R{Aa5-Aai) (A.115) 

«   cos fcAx + sin faAy ± Ä (Aa5 - Aa<) (A.116) 

where the appropriate choice of ± depends particular cable being considered and 

Ax5 = x5 - x5o (A.117) 

At/5 = t/5-y5o (A.118) 

Aa5 = a5 - a5o (A.119) 

Attj = at - aio (A.120) 
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Equations of motion 

By substituting the ASJ'S and fcj's we can rewrite the equilibrium equations in matrix 

form as 

Mv + Kv = 0 (A.121) 

where v = [a1,a2,a3,ai,a5,x5, y5]T. The system mass matrix M is given by 

M = 

Jl 0 0 0 0 0 0 

0 J2 0 0 0 0 0 

0 0 Js 0 0 0 0 

0 0 0 h 0 0 0 

0 0 0 0 Js 0 0 

0 0 0 0 0 m5 0 

0 0 0 0 0 0 ra5 

while K, the system stiffness matrix, equals 

(A.122) 

K 

-hR2 0 0 0 kxR
2 kiRiCi k\R\S\ 

0 -k2R
2 0 0 k2R

2 k2R2c2 k2R2s2 

0 0 -kzR
2 0 hR2 hR3c3 ksR3s3 

0 0 0 -k4R
2 k4R

2 k^R^Ci k^RiSi 

kxR
2 k2R

2 k3R
2 k4R

2 R2Zh / ■ Kitt\Ci / . n>xtt\Si 

kiR\C\ k2R2c2 kzR3c3 kiR^Ci / . Kitn^i The2 
2_j KiS{Ci 

kiR\Si k2R2s2 k3R3s3 k$Rns± / . rüilhiSi y. "»jSjCj ZkiS2 

(A.123) 
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where the summations are performed for i = 1... 4, Cj = cos 4>h «i = sin fc, and, for 

our system, 

xii    —    —R 

R2   =   R (A.124) 

i?3   =   — R 

R4    =    it 

A.6.3    Strum Frequencies 

In addition to the modes discussed above a cable under tension can also experience 

tranverse vibrations. For a cable of supported at both ends, having length L and 

mass per unit length p and subject to tension T the fundamental tranverse vibrational 

frequencies are well known and are equal to 

/ ='W* (A-125) pL* 

Representative worst case values for the cables used to control the surrogate vehicle 

are L = 50 in., p = 3.3e_4lbm./in. and T = .251bf. the fundamental frequency is 5 

Hz. 
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Appendix B 

Case 1: One Point Contact with 

No Slip ( Pure Rotation) 
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Figure B-l: Case 1 Experiment: Edge 5 of the vehicle was brought into contact with 
the corner cl of a fixed object in environment. The vehicle was then rotated about 
this corner such that little or no slip occurred at the contact point. Initial rotation 
was the counter clockwise direction, then the rotation was reveresed , bringing the 
vehicle (approximately) back to its original position. The obstacle was a square bar 
of 6061 aluminum alloy. 
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Case1:Bestcontactpointsversustirneforrnu = 0.1,^  =0.5 
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Case 1: Violation Power Metric for One Point Contact with Slip Models 
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Case 1: Measured Net Contact Forces In Instantaneous Vehicle Frame Coordinates 
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Figure B-6: Case 1: Measured Force and Moment vs. Time. 
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Figure B-7: Case 1: Measured Velocity vs. Time. 
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Appendix C 

Case 2: One Point Contact with 

Slip ( Rotation and Translation ) 
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Figure C-l: Case 2 Experiment: Edge 5 of the vehicle was brought into contact with 
a fixed cylindrical obstacle. The vehicle was then moved such that it was in sliding 
contact, where the vehicle motion combined both rotation and translation of the 
vehicle relative to the contact point. The obstacle was a 12.7 mm diameter stainless 
steel bar. 
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Case 2: Best contact points versus time for mu = 0.25, f   = 0.5 
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Case 2: Violation Power Metric for One Point Contact with Slip Models 
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Case 2: Measured Net Contact Forces in Instantaneous Vehicle Frame Coordinates 
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Appendix D 

Case 3: Two Point Contact ( Pure 

Translation ) 

201 



^ 

Figure D-l: Case 3 Pure Translation: Edge 5 of the vehicle was brought into full 
contact with a flat wall.. This contact was maintained throughout the trial as the 
vehicle was translated first upward and then downward back to its approximate initial 
position. The wall was smooth, rectangular block of 6061 aluminum 
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CÄse 3: Best contact points versus time for mu = 0.2, f   =0.5 
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Case 3: Violation Power Metric for One Point Contact with Slip Models 
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Case 3: Measured Net Contact Forces in Instantaneous Vehicle Frame Coordinates 
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Case 3: Measured Vehicle Velocity in Instantaneous Vehicle Frame Coordinates 
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Appendix E 

Case 4: Two Point Contact ( 

Rotation and Translation ) 
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Figure E-l: Case 4 Experiment: The vehicle was brought into contact with two fixed 
cylindrical obstacles and then rotated in a clockwise direction. Initially vehicle edges 
3 and 5 contacted the cylinders ( we shall refer to this contact configuration as simply 
(3,5) ). As the vehicle rotates, the actual contact state eventually transitions from 
from (3,5) to (3,4). Both obstacles were 12.7 mm diameter stainless steel bars. 
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Case 4: Best contact points versus time for mu = 0.25, f   =0 

7,8 
6,8 
6,7 
5,8 
5,7 
5,6 
4,8 
4,7 
4,6 
4,5 
3,8 
3,7 
3,6 
3,5 

§2,8 
I 2,7 
£2,6 
■§2,5 
£2,4 
§2,3 
U 1,8 

1,7 
1,6 
1,5 
1,4 
1,3 
1* 

Percentage Correct 

No. Contact Points: 90% 

Mode! : 57% 

Within 1 model     : 88% 

2 point 

'models' 

5 
4-- 

1 point 

' model's' 

1.5 
Bme(s) 

2.5 
m-ffl«; ch_znvjlgs.m 

Dal» Hto(8): d»t_2p«_iii«ip25_tp0_d4.il 

Figure E-2: Case 4: Best Overall Model vs. Time 

Case 4: Violation Energy Metric for Best One and Best Two Point Contact Models 

2.5 
m-W»: ch_mv_flgs.m 

Date «•<•): dat_2pB_mtj(>2SJp0_d4.ir 

Figure E-3: Case 4: Best Number of Contact Points vs. Time 

208 



Case 4: Violation Power Metric for One Point Contact with Slip Models 
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Figure E-4: Case 4: Best One Point Model vs. Time. 
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Case 4: Measured Vehicle Velocity in Instantaneous Vehicle Frame Coordinates 
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Appendix F 

Case 5: Two Point Contact ( 

Rotation and Translation ) 
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Case S: Violation Power Metric for One Point Contact with Slip Models 
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Case 5: Violation Power Metric for Two Point Contact Models 
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Figure F-5: Case 5: Best Two Point Model vs. Time. 
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Case 5: Measured Vehicle Velocity In Instantaneous Vehicle Frame Coordinates 
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Appendix G 

Consistency Measure and 

Dimenional Analysis 

Ideally our consistency measure would actually be a consistency metric, i.e. a single 

valued positive definite function whose value is zero if an only if none of the constraints 

associated with the the model being tested were violated at all. An obvious form for 

such a metric would be 

P = FjWfFj + AXjWAxAXj (G.l) 

where W/ and WAZ are positve definite weighting matrices whose elements have 

the appropriate units to make P dimensionly consistent. The left-hand term is a 

measure of the degree to which the measured force vector Tm violates the constraints 

associated with the contact model being tested while the right-hand term indicates 

the degree to which the vehicle's measured differential motion vector AXm violates 

the model's motion constraints. 

We know that, given perfect data, all of these constraints would be perfectly 

satified when we tested the correct model.   With imperfect sensors and imperfect 
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knowledge of the vehicle's physical parameters we expect that, in the real world, even 

the correct model's constraints will not be perfectly satisfied. However, we expect that 

the constraint violations for the correct model will be smaller than those for incorrect 

models and so we choose the model with the smallest inconsisitency measure. 

We face a problem in constructing an inconsistency measure, however. Each 

candidate model has six constraints associated with it; two force constraints, one 

moment constraint, two linear motion constraints and one angular motion constraint. 

While we can easily compute to what degree each individual constraint is violated, 

coming up with an overall in consistency measure for the model is complicated by the 

fact that these violations have a variety of different units (i.e. force, moment, linear 

displacement, angular displacement). To intelligently combine these different terms 

into a single, dimensionally sensible measure we must not only convert each term into 

a common set of units but we must also determine the relative importance of each 

constraint. 

We can employ dimensional analysis to express the different terms in the same 

units (i.e. express each term in dimensionless form). It The elements of the vectors 

Ti and AXj have units of 

[fy] 

[mv] = 

LM 
J^2 

LM 
rp2 

L2M 
J"2 

, [Ax] = [L] 

, [Ay] = [L] 

,   [A0] = [1] 

(G.2) 

(G.3) 

(G.4) 

where, using Buckingham Pi notation, surrounding a term g by square brackets means 

"the units of g" and the terms L, M and T represent units quantities having the 

dimensions of length, mass and time respectively. Thus we have five independent 

measured quanties which are not dimensionless ( fx, fy,mv, Ax, Ay) but only theree 

WHATEVER parameters ( L, M and T ), indicating that we need only 5-3 = 2 
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WHATEVER parameters to non-dimensionalize the problem 

A = T (G.5) 
Jc 

s; = ^ (G.6) 

-* - k <G7> 
,   * AT Az* = -^ (G.8) 

Ay* = ^ (G.9) 

AÖ* = Aö (G.10) 

where fc and /c are a characteristic force and a characteristic length, respectively, 

that we must choose. Unfortunately the choice of these parameters is arbitrary and as 

such results in the assignment of arbitrary relative weights to the various constraints 

associated with the model. This is very undesirable as it requires an ad hoc approach 

to finding values of fc and lc lead to accurate contact identification and, if such values 

can be found, there is no guarantee that they will work well for contact situations 

other than the once used to obtain the values. Thus an inconsistency metric of the 

form of equation G.l is not an advisable choice. 
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Appendix H 

Reaction loads for two point 

contact models, assuming /i^ 

unknown 

EFX   = 0 =   fXext + /«,Assign (vu) + /resign (vtj) cosBj - /„. sin Oj (H.l) 

EFy   =0=   /3/eit + /ni+/n.//dsign(t;t,)sinöJ + /nj.cos^ (H.2) 

SmK   = 0 =   Mert - yjfnj [/^sign (uti) cos 6j - sin 0,-] 

+arj fnj [^rfsign (vt>) sin 0, + cos 0,] (H.3) 

0   =   Mext - /„. Assign (vtj) [-xj sin 6j + yj cos 0j] 

+fnj [xj cos 0,- + y5 sin 0^] 

0   =   Mext + fnj[X-Yfidsign(vtj)} (H.4) 
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Solve H.2 for fni to get 

,   _     [fxext + fnj (ßdSign (vtj) cos 0j - sin %)] 
Jm — : -,—;  (H-5) 

Likewise, solve H.3 for fni to get 

fni = - [fyexi + fnj (/irfsign (vtj) sin 9j + cos%)] (H.6) 

Equating these results and solving for fnj we obtain 

f     _    fxext ~ fyextVdSign (vti) 
JTlj 

Assign (ytiVtj) sinOj + /^sign (vu) cos9j - /xdsign (ytj) cos6j + sinfl, 

f     _   fxe*t- fyeXtVdSign(vti) 

aßj + bfid + c K     ' 

where 

a   =   sign (yuvti) sin 0, (H.8) 

&   =    [sign(uti)-sign (u<.)] cosöj (H.9) 

c   =   sinflj- (H.10) 

Using H.7 to replace fn. in equation H.6 the expression for fn. becomes 

,   _ (fyeXtt*d&ga- K) ~ fxext) (^sign (ut.) sinflj + cosfy) 
Jni —      Jyext H 2    ,    L !  (H-ll) 

a/^ + out + c 

Combining both terms over a common denominator and simplifying yields 

_ f*xt [^sign (ytj) cos Oj + sin Oj] - fXext [/idsign (yfj.) sin 9j + cos 0,] 
Jm 2 , L      i "   (H.12) 

a/^ + 0/^ + 0 

Using H.12 and H.ll to replace /n. and fnj in equation H.3 and combining terms 
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yields a quadratic in /id, that is 

An2
d + B/id + C = 0 (H.13) 

where 

A   =   sign (vtivtj)[Mext sinOj + Yf^J (H.14) 

£   =   sign {vti) [Mextcos0,- - Xfyext] - sign (vt,) [Mext cosOj + YfXeXt] (H.15) 

C   =   MeztsinOj+Xf^ (H.16) 

Thus, to find the reaction loads at the contact points we find the two solutions to 

H.13 and use H.12 and H.ll to compute the normal reaction loads associated with 

each solution. 

Because there are two solutions to H.13, each pairing of candidate contact points 

yields, in effect, two contact models, one associated with each solution of H.13. 
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Appendix I 

Mathematical Notation for Part II 

Scalar, Vector and Matrix Variables 

• Scalar variables are represented by italicized symbols ( e.g. CJ, n, /„, etc.). 

• Vector and matrix variables are represented by bold face symbols ( e.g. r,-, Rj, 

A, etc.). 

• Vectors whose elements have differing units are represented by bold face capi- 

talized calligraphic symbols ( e.g. Tm, Vj, AAfp, etc). 

• Subscripts on scalar, vector and matrix variables specific instances of generic 

variables (e.g. ßd, /J,S, Tm, FP, Tj, etc. ). 

• Prefixed superscripts specify the reference frame the quantity in which the quan- 

tity is represented. 

Planar Cross Product 

In general three dimensional (i.e.   non-planar) motion, the linear velocity V/ of a 

point pi on a rigid body can be wrritten as 

Vj = Vj + Tji X U (1.1) 

222 



Symbol Dimension Units Description 

iV Scalar lxl none number of candidate contact points 

J~ m Vector 3x1 N, Nm measured contact force and moment 

Tp Vector 3x1 N, Nm permissable portion of measured 
force vector 

Fi Vector 3x1 N, Nm impermissable portion of measured 
force vector 

Vm 
Vector 3x1 m/s, rad/sec measured vehicle velocity 

AXm Vector 3x1 m, rad measured differential motion vector 

AXP Vector 3x1 N, Nm permissable portion of differential 
motion vector 

AAT/ Vector 3x1 N, Nm impermissable portion of differential 
motion vector 

*« Vector 2x1 m position vector to candidate contact point i 

A*d Scalar lxl none dynamic coefficient of friction 

vt Scalar lxl m/s velocity in tangential direction 

Vn 
Scalar lxl m/s velocity in normal direction 

U) Scalar lxl rad/s angular velocity 

ft Scalar lxl N contact force in tangential direction 

Jn Scalar lxl N contact force in normaldirection 

I Matrix none identity matrix 

Ri Matrix 2x2 none rotation matrix 
n Scalar lxl none no. of independent variables required to 

describe a candiate contact model's 
contact point reaction loads 

A Matrix 3xm none, m coefficients of a candidate contact model's 
force constraint equations 

B Matrix 3x(3-m) none, m coefficients of a candidate contact model's 
velocity constraint equations 

?TP 
Matrix 3x3 none, m projection matrix which extracts jFp 

from Tm 

!-p^ Matrix 3x3 none, m projection matrix which extracts Ti 
from Tm 

PVP Matrix 3x3 none, m projection matrix which extracts AXp 
from AAfm 

i-Pv, Matrix 3x3 none, m projection matrix which extracts AXj 
from AAfm 

Table 1.1: Mathematical notation 
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where v^ is the 3x1 linear velocity vector of some other point Pj on the body, r^ is 

the 3x1 displacement vector from point pj to Pi and u is the 3x1 angular velocity 

vector for the body. In planar motion, however, the angular velocity of a body is 

most conveniently described by a scalar u. For notational convenience we make the 

following definition. Given a 2x1 vector r-j we a define a 2x1 cross product vector fox] 

such that 

fox] = (1.2) 

where rix and riy are the scalar x and y components of the original vector r;. Given 

this definition, the planar version of the cross product between a vector r-j and the 

angular velocity is 

TiX CV — [TiX]iV (1.3) 

Using the same notation, the cross product between a vector i-j and a second 2x1 

vector v can be written as 

Ti X V= fox]TV (1.4) 

We shall use this notation throughout this thesis. 
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